Câu hỏi:

13/01/2026 24 Lưu

Cho elip \(\left( E \right):\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1\). Cho \(M\) là điểm thuộc \(\left( E \right)\) thỏa mãn \(M{F_1} + 2M{F_2} = 11\). Tính\(2M{F_1} + M{F_2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

13

Lời giải

Ta có \(M{F_1} + M{F_2} = 2a = 2 \cdot 4 = 8\).

Suy ra \(3M{F_1} + 3M{F_2} = 24\) hay \(\left( {2M{F_1} + M{F_2}} \right) + \left( {M{F_1} + 2M{F_2}} \right) = 24\).

Vì \(M{F_1} + 2M{F_2} = 11\) nên \(2M{F_1} + MF = 24 - 11 = 13\).

Trả lời: 13.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Có \(\overrightarrow {AB}  = \left( { - 1;3} \right)\) là vectơ chỉ phương của \(AB\) nên nhận \(\overrightarrow n  = \left( {3;1} \right)\) làm vectơ pháp tuyến.

Đường thẳng \(AB\) đi qua \(A\) và nhận \(\overrightarrow n  = \left( {3;1} \right)\) làm vectơ pháp tuyến có phương trình là \(3x + y - 8 = 0\).

Vì \(C \in d \Rightarrow C\left( {t;2t - 8} \right)\).

Ta có \(AB = \sqrt {10} \) mà \({S_{\Delta ABC}} = 2 \Rightarrow d\left( {C,AB} \right) = \frac{4}{{\sqrt {10} }}\).

Khi đó \(\frac{{\left| {3t + \left( {2t - 8} \right) - 8} \right|}}{{\sqrt {{3^2} + {1^2}} }} = \frac{4}{{\sqrt {10} }}\)\( \Leftrightarrow \left| {5t - 16} \right| = 4\)\( \Leftrightarrow \left[ \begin{array}{l}t = 4\\t = \frac{{12}}{5}\end{array} \right.\).

Với \(t = 4 \Rightarrow C\left( {4;0} \right)\) (loại).

Với \(t = \frac{{12}}{5} \Rightarrow C\left( {\frac{{12}}{5}; - \frac{{16}}{5}} \right)\). Do đó \(a + 2b =  - 4\).

Trả lời: −4.

Lời giải

Lời giải

Có \(\overrightarrow {AM}  = \left( {x - 1;y - 3} \right)\); \(\overrightarrow {AB}  = \left( { - 2; - 1} \right)\).

Vì \(M\left( {x;y} \right)\) thuộc tia \(AB\) nên \(\overrightarrow {AM}  = k\overrightarrow {AB} ,k > 0\).

Theo đề ta có hệ \(\left\{ \begin{array}{l}\frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 1}}\\{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\{\left( {2y - 6} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\5{y^2} - 30y - 35 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\\left[ \begin{array}{l}y = 7\\y =  - 1\end{array} \right.\end{array} \right.\)\( \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x =  - 7\\y =  - 1\end{array} \right. \Rightarrow \overrightarrow {AM}  = \left( { - 8; - 4} \right)\\\left\{ \begin{array}{l}x = 9\\y = 7\end{array} \right. \Rightarrow \overrightarrow {AM}  = \left( {8;4} \right)\end{array} \right.\).

\(\overrightarrow {AM}  = k\overrightarrow {AB} ,k > 0\) nên \(M\left( { - 7; - 1} \right)\). Do đó \(x =  - 7;y =  - 1\). Vậy \(x + y =  - 8\).

Trả lời: −8.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({M_1}\left( { - 1; - 2} \right)\).  
B. \({M_1}\left( {1; - 2} \right)\). 
C. \({M_1}\left( {2;1} \right)\). 
D. \({M_1}\left( { - 1;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(2x + 3y + 4 = 0\). 
B. \(2x + 3y - 3 = 0\). 
C. \(x + 3y + 5 = 0\).  
D. \(3x - 2y - 7 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Tọa độ của \(\overrightarrow {BC} \) là \(\left( {0; - 4} \right)\).
Đúng
Sai
b) Tọa độ trung điểm của \(AB\) là \(\left( {\frac{3}{2};1} \right)\).
Đúng
Sai
c) \(\overrightarrow {AB}  \cdot \overrightarrow {AC}  =  - 9\).
Đúng
Sai
d) Gọi \(D\left( {a;b} \right)\) là chân đường phân giác trong kẻ từ đỉnh \(A\) lên \(BC\). Khi đó \(a + b = 2,5\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP