Đường thẳng \(d\) đi qua điểm \(M\left( { - 2;1} \right)\) và vuông góc với đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 1 - 3t\\y = - 2 + 5t\end{array} \right.\) có phương trình tham số là
Quảng cáo
Trả lời:
Đường thẳng \(d \bot \Delta \) nên \(d\) nhận vectơ chỉ phương \(\overrightarrow u = \left( { - 3;5} \right)\) của đường thẳng \(\Delta \) làm vectơ pháp tuyến.
Suy ra \(d\) có một vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {5;3} \right)\).
Khi đó \(d\) có phương trình là \(\left\{ \begin{array}{l}x = - 2 + 5t\\y = 1 + 3t\end{array} \right.\). Chọn B.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Dễ thấy \(A,B\) nằm khác phía với đường thẳng \(d\).
Khi đó \(AM + MB \ge AB\).
Do đó đường đi ngắn nhất khi 3 điểm \(A,B,M\) thẳng hàng.
Suy ra \(\overrightarrow {AM} ,\overrightarrow {AB} \) cùng phương.
Ta có \(M \in d \Rightarrow M\left( {t; - 5 - 2t} \right)\), \(\overrightarrow {AM} = \left( {t - 1; - 2t - 2} \right),\overrightarrow {AB} = \left( { - 5;5} \right)\).
Do \(\overrightarrow {AM} ,\overrightarrow {AB} \) cùng phương nên \(\frac{{t - 1}}{{ - 5}} = \frac{{ - 2t - 2}}{5}\)\( \Leftrightarrow 5\left( {t - 1} \right) - \left( { - 2t - 2} \right) \cdot \left( { - 5} \right) = 0 \Rightarrow t = - 3\)\( \Rightarrow M\left( { - 3;1} \right)\).
Do đó \(a + b = - 2\).
Lời giải
Vì \(P \in \Delta \) nên \(P\left( {a;a + 2} \right)\). Ta có \(\overrightarrow {PM} = \left( {1 - a; - a - 2} \right);\overrightarrow {PN} = \left( { - 1 - a;1 - a} \right)\).
Do tam giác \(MNP\) vuông tại \(P\) nên \(\overrightarrow {PM} \cdot \overrightarrow {PN} = 0\)\( \Leftrightarrow \left( {1 - a} \right)\left( { - 1 - a} \right) + \left( { - a - 2} \right)\left( {1 - a} \right) = 0\)
\( \Leftrightarrow {a^2} - 1 + {a^2} + a - 2 = 0\)\( \Leftrightarrow 2{a^2} + a - 3 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}a = 1\\a = - \frac{3}{2}\end{array} \right.\).
Vì \(a \in \mathbb{Z}\) nên \(a = 1 \Rightarrow b = 3\).
Vậy \(T = 2a + 3b = 11\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.