Câu hỏi:

13/01/2026 69 Lưu

Cho tam giác \(ABC\) có phương trình đường thẳng chứa các cạnh \(AB,AC,BC\) lần lượt là \(x + 2y - 1 = 0;x + y + 2 = 0;2x + 3y - 5 = 0\). Tính khoảng cách từ \(A\) đến đường thẳng \(BC\) (kết quả làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1,67

Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ \begin{array}{l}x + 2y - 1 = 0\\x + y + 2 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = - 5\\y = 3\end{array} \right.\)\( \Rightarrow A\left( { - 5;3} \right)\).

Ta có \(d\left( {A,BC} \right) = \frac{{\left| {2 \cdot \left( { - 5} \right) + 3 \cdot 3 - 5} \right|}}{{\sqrt {{2^2} + {3^2}} }} = \frac{6}{{\sqrt {13} }} \approx 1,67\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(P \in \Delta \) nên \(P\left( {a;a + 2} \right)\). Ta có \(\overrightarrow {PM} = \left( {1 - a; - a - 2} \right);\overrightarrow {PN} = \left( { - 1 - a;1 - a} \right)\).

Do tam giác \(MNP\) vuông tại \(P\) nên \(\overrightarrow {PM} \cdot \overrightarrow {PN} = 0\)\( \Leftrightarrow \left( {1 - a} \right)\left( { - 1 - a} \right) + \left( { - a - 2} \right)\left( {1 - a} \right) = 0\)

\( \Leftrightarrow {a^2} - 1 + {a^2} + a - 2 = 0\)\( \Leftrightarrow 2{a^2} + a - 3 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}a = 1\\a = - \frac{3}{2}\end{array} \right.\).

\(a \in \mathbb{Z}\) nên \(a = 1 \Rightarrow b = 3\).

Vậy \(T = 2a + 3b = 11\).

Câu 2

A. \(\overrightarrow u = \left( { - 4;3} \right)\).    
B. \(\overrightarrow u = \left( {4;3} \right)\).                       
C. \(\overrightarrow u = \left( {3;4} \right)\).        
D. \(\overrightarrow u = \left( {1; - 2} \right)\).

Lời giải

Vectơ chỉ phương của đường thẳng \(d:\left\{ \begin{array}{l}x = 1 - 4t\\y = - 2 + 3t\end{array} \right.\)\(\overrightarrow u = \left( { - 4;3} \right)\). Chọn A.

Câu 3

A. \(\overrightarrow n  = \left( {1; - 2} \right)\).    
B. \(\overrightarrow n  = \left( {2;1} \right)\).                      
C. \(\overrightarrow n  = \left( { - 2;3} \right)\).     
D. \(\overrightarrow n  = \left( {1;3} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left\{ \begin{array}{l}x = - 2 - 3t\\y = 1 + 5t\end{array} \right.\).         
B. \(\left\{ \begin{array}{l}x = - 2 + 5t\\y = 1 + 3t\end{array} \right.\).                   
C. \(\left\{ \begin{array}{l}x = 1 - 3t\\y = 2 + 5t\end{array} \right.\).                      
D. \(\left\{ \begin{array}{l}x = 1 + 5t\\y = 2 + 3t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left\{ \begin{array}{l}x = - 4 - 2t\\y = 3 + 5t\end{array} \right.\).         
B. \(\left\{ \begin{array}{l}x = - 4 + 2t\\y = 3 + 5t\end{array} \right.\).                   
C. \(\left\{ \begin{array}{l}x = - 4 - 2t\\y = 5 + 3t\end{array} \right.\).                    
D. \(\left\{ \begin{array}{l}x = 4 + 3t\\y = - 2 + 5t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP