Câu hỏi:

13/01/2026 41 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(\Delta :ax + by + c = 0\left( {a;b;c \in \mathbb{N};a < 2} \right)\) vuông góc với đường thẳng \(d:3x - y + 4 = 0\)\(\Delta \) cách \(A\left( {3;2} \right)\) một khoảng \(2\sqrt {10} \). Tính giá trị biểu thức \(T = 3a + b + 4c.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

50

Đường thẳng \(\Delta \) vuông góc với đường thẳng \(d\) nên có dạng: \(x + 3y + c = 0\).

Lại có \(d\left( {A,\Delta } \right) = 2\sqrt {10} \) nên \(\frac{{\left| {3 + 3 \cdot 2 + c} \right|}}{{\sqrt {{1^2} + {3^2}} }} = 2\sqrt {10} \)\( \Leftrightarrow \left| {9 + c} \right| = 20\)\( \Leftrightarrow \left[ \begin{array}{l}9 + c = 20\\9 + c = - 20\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}c = 11\\c = - 29\end{array} \right.\).

\(a;b;c \in \mathbb{N};a < 2\) nên \(x + 3y + 11 = 0\).

Do đó \(a = 1;b = 3;c = 11\). Vậy \(T = 3 \cdot 1 + 3 + 4 \cdot 11 = 50\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(P \in \Delta \) nên \(P\left( {a;a + 2} \right)\). Ta có \(\overrightarrow {PM} = \left( {1 - a; - a - 2} \right);\overrightarrow {PN} = \left( { - 1 - a;1 - a} \right)\).

Do tam giác \(MNP\) vuông tại \(P\) nên \(\overrightarrow {PM} \cdot \overrightarrow {PN} = 0\)\( \Leftrightarrow \left( {1 - a} \right)\left( { - 1 - a} \right) + \left( { - a - 2} \right)\left( {1 - a} \right) = 0\)

\( \Leftrightarrow {a^2} - 1 + {a^2} + a - 2 = 0\)\( \Leftrightarrow 2{a^2} + a - 3 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}a = 1\\a = - \frac{3}{2}\end{array} \right.\).

\(a \in \mathbb{Z}\) nên \(a = 1 \Rightarrow b = 3\).

Vậy \(T = 2a + 3b = 11\).

Câu 2

A. \(\overrightarrow u = \left( { - 4;3} \right)\).    
B. \(\overrightarrow u = \left( {4;3} \right)\).                       
C. \(\overrightarrow u = \left( {3;4} \right)\).        
D. \(\overrightarrow u = \left( {1; - 2} \right)\).

Lời giải

Vectơ chỉ phương của đường thẳng \(d:\left\{ \begin{array}{l}x = 1 - 4t\\y = - 2 + 3t\end{array} \right.\)\(\overrightarrow u = \left( { - 4;3} \right)\). Chọn A.

Câu 3

A. \(\overrightarrow n  = \left( {1; - 2} \right)\).    
B. \(\overrightarrow n  = \left( {2;1} \right)\).                      
C. \(\overrightarrow n  = \left( { - 2;3} \right)\).     
D. \(\overrightarrow n  = \left( {1;3} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left\{ \begin{array}{l}x = - 2 - 3t\\y = 1 + 5t\end{array} \right.\).         
B. \(\left\{ \begin{array}{l}x = - 2 + 5t\\y = 1 + 3t\end{array} \right.\).                   
C. \(\left\{ \begin{array}{l}x = 1 - 3t\\y = 2 + 5t\end{array} \right.\).                      
D. \(\left\{ \begin{array}{l}x = 1 + 5t\\y = 2 + 3t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left\{ \begin{array}{l}x = - 4 - 2t\\y = 3 + 5t\end{array} \right.\).         
B. \(\left\{ \begin{array}{l}x = - 4 + 2t\\y = 3 + 5t\end{array} \right.\).                   
C. \(\left\{ \begin{array}{l}x = - 4 - 2t\\y = 5 + 3t\end{array} \right.\).                    
D. \(\left\{ \begin{array}{l}x = 4 + 3t\\y = - 2 + 5t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP