Câu hỏi:

13/01/2026 30 Lưu

Trong mặt phẳng \(Oxy\), cho đường thẳng \(d:x - y + 2 = 0\).

a) Một vectơ pháp tuyến của đường thẳng \(d\)\(\overrightarrow n = \left( {1; - 1} \right)\).

Đúng
Sai

b) Khoảng cách từ \(O\) đến đường thẳng \(d\) bằng \(2\sqrt 2 \).

Đúng
Sai

c) Đường thẳng \(d\) tạo với hệ trục một tam giác có diện tích bằng 4.

Đúng
Sai
d) Góc giữa \(d\) và trục \(Ox\) bằng \(45^\circ \).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Một vectơ pháp tuyến của đường thẳng \(d\)\(\overrightarrow n = \left( {1; - 1} \right)\).

b) Ta có \(d\left( {O,d} \right) = \frac{{\left| 2 \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \sqrt 2 \).

c) Đường thẳng \(d\) cắt trục \(Ox,Oy\) lần lượt tại \(A\left( { - 2;0} \right),B\left( {0;2} \right)\).

Khi đó \({S_{\Delta AOB}} = \frac{1}{2} \cdot 2 \cdot 2 = 2\).

d) Đường thẳng \(d\) có một vectơ pháp tuyến \(\overrightarrow n = \left( {1; - 1} \right)\) và trục \(Ox\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {0;1} \right)\).

Khi đó \(\cos \left( {d,Ox} \right) = \frac{{\left| {1 \cdot 0 + \left( { - 1} \right) \cdot 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} \cdot \sqrt {{0^2} + {1^2}} }} = \frac{1}{{\sqrt 2 }} \Rightarrow \left( {d,Ox} \right) = 45^\circ \).

Đáp án: a) Đúng;     b) Sai;   c) Sai;    d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Điểm \(N\) thuộc trục \(Oy\) sao cho \(N\) cách đều \(B,C\) có tung độ bằng \( - \frac{5}{8}\).

Đúng
Sai

b) \(A,B,C\) là ba đỉnh của một tam giác.

Đúng
Sai

c) \(ABC\) là tam giác vuông.

Đúng
Sai
d) Tứ giác \(ABCD\) là hình bình hành khi \(D\left( {2; - 3} \right)\).
Đúng
Sai

Lời giải

a) Điểm \(N\left( {0;b} \right) \in Oy\).

\(N\) cách đều \(B,C\) nên \(NB = NC\)\( \Leftrightarrow {2^2} + {\left( {1 - b} \right)^2} = {\left( { - 1} \right)^2} + {\left( { - 3 - b} \right)^2}\)\( \Leftrightarrow 8b = - 5 \Leftrightarrow b = - \frac{5}{8}\).

Điểm \(N\) có tung độ là \( - \frac{5}{8}\).

b) Ta có \(\overrightarrow {AB} = \left( {3;0} \right);\overrightarrow {AC} = \left( {0; - 4} \right)\).

Ta có \(\overrightarrow {AB} ,\overrightarrow {AC} \) không cùng phương nên \(A,B,C\) là ba đỉnh của một tam giác.

c) Có \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 3 \cdot 0 + 0 \cdot \left( { - 4} \right) = 0\).

Do đó tam giác \(ABC\) vuông tại \(A\).

d) Gọi \(D\left( {x;y} \right)\). Ta có \(\overrightarrow {AB} = \left( {3;0} \right);\overrightarrow {DC} = \left( { - 1 - x; - 3 - y} \right)\).

Để \(ABCD\) là hình bình hành thì \(\overrightarrow {AB} = \overrightarrow {DC} \)\[ \Leftrightarrow \left\{ \begin{array}{l} - 1 - x = 3\\ - 3 - y = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\y = - 3\end{array} \right. \Rightarrow D\left( { - 4; - 3} \right)\].

Đáp án: a) Đúng;     b) Đúng;   c) Đúng;    d) Sai.

Lời giải

Đường tròn \(\left( C \right)\) có tâm \(I\left( {2; - 1} \right)\) và \(R = 5\).

Vì tiếp tuyến \(d\) của đường tròn \(\left( C \right)\) song song với đường thẳng \(\Delta \) có dạng \(3x - 4y + c = 0,c \ne  - 35\).

Lại có \(d\left( {I,d} \right) = R\)\( \Leftrightarrow \frac{{\left| {3 \cdot 2 - 4 \cdot \left( { - 1} \right) + c} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} }} = 5\)\( \Leftrightarrow \left| {10 + c} \right| = 25\)\( \Leftrightarrow \left[ \begin{array}{l}10 + c = 25\\10 + c =  - 25\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}c = 15\\c =  - 35\end{array} \right.\).

Vì \(c \ne  - 35\) nên \(c = 15\). Do đó \(d:3x - 4y + 15 = 0\).

Suy ra \(b =  - 4;c = 15\). Vậy \(b + c = 11\).

Câu 4

a) Tiêu cự của \(\left( E \right)\) là 8.

Đúng
Sai

b) Điểm \(F\left( { - 5;0} \right)\) trùng với một tiêu điểm của \(\left( E \right)\).

Đúng
Sai

c) Điểm \(K\left( {3;0} \right)\) thuộc \(\left( E \right)\).

Đúng
Sai
d) Biết rằng hypebol \(\left( H \right):\frac{{{x^2}}}{{{A^2}}} - \frac{{{y^2}}}{{{B^2}}} = 1\) có các tiêu điểm trùng với các tiêu điểm của \(\left( E \right)\) và đi qua điểm \(N\left( {\sqrt {15} ;1} \right)\). Điểm \(M\) là một điểm bất kì nằm trên \(\left( H \right)\) thì \(\left| {M{F_1} - M{F_2}} \right| = 2\sqrt 3 \).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Đường thẳng \(\Delta :x - y + 3 = 0\) tiếp xúc với đường tròn \(\left( C \right)\).

Đúng
Sai

b) Tiếp tuyến của đường tròn \(\left( C \right)\) tại \(A\) có phương trình \(x + 7y + 9 = 0\).

Đúng
Sai

c) Điểm \(A\) thuộc đường tròn \(\left( C \right)\).

Đúng
Sai
d) Có hai tiếp tuyến của đường tròn \(\left( C \right)\) song song với đường thẳng \(d:x + y + 7 = 0\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x + 2y - 3 = 0\).          
B. \(x - 2y + 5 = 0\).         
C. \(x + 2y = 0\).               
D. \(x + 2y - 5 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP