Trong mặt phẳng tọa độ \(Oxy\), cho elip \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\) có hai tiêu điểm là \({F_1},{F_2}\).
Trong mặt phẳng tọa độ \(Oxy\), cho elip \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\) có hai tiêu điểm là \({F_1},{F_2}\).
a) Tiêu cự của \(\left( E \right)\) là 8.
b) Điểm \(F\left( { - 5;0} \right)\) trùng với một tiêu điểm của \(\left( E \right)\).
c) Điểm \(K\left( {3;0} \right)\) thuộc \(\left( E \right)\).
Quảng cáo
Trả lời:
a) Có \({a^2} = 25;{b^2} = 9 \Rightarrow {c^2} = {a^2} - {b^2} = 25 - 9 = 16 \Rightarrow c = 4\).
Tiêu cự là \(2c = 8\).
b) Tiêu điểm \({F_1}\left( { - 4;0} \right),{F_2}\left( {4;0} \right)\).
c) Thay tọa độ điểm \(K\left( {3;0} \right)\) vào phương trình \(\left( E \right)\) ta thấy không thỏa mãn.
Do đó \(K\left( {3;0} \right)\) không thuộc \(\left( E \right)\).
d) Có \(\left( H \right):\frac{{{x^2}}}{{{A^2}}} - \frac{{{y^2}}}{{{B^2}}} = 1\) có các tiêu điểm trùng với các tiêu điểm của \(\left( E \right)\) nên \({A^2} + {B^2} = 16\).
Lại có \(\left( H \right)\) đi qua điểm \(N\left( {\sqrt {15} ;1} \right)\) nên \(\frac{{15}}{{{A^2}}} - \frac{1}{{{B^2}}} = 1 \Rightarrow 15{B^2} - {A^2} = {A^2}{B^2}\)\( \Rightarrow 240 - 16{A^2} = {A^2}\left( {16 - {A^2}} \right)\)\[ \Rightarrow {A^4} - 32{A^2} + 240 = 0 \Rightarrow \left[ \begin{array}{l}{A^2} = 12\left( {TM} \right)\\{A^2} = 20\left( {KTM} \right)\end{array} \right.\].
Với \({A^2} = 12 \Rightarrow A = 2\sqrt 3 \).
Suy ra \(\left| {M{F_1} - M{F_2}} \right| = 4\sqrt 3 \).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Điểm \(N\) thuộc trục \(Oy\) sao cho \(N\) cách đều \(B,C\) có tung độ bằng \( - \frac{5}{8}\).
b) \(A,B,C\) là ba đỉnh của một tam giác.
c) \(ABC\) là tam giác vuông.
Lời giải
a) Điểm \(N\left( {0;b} \right) \in Oy\).
Vì \(N\) cách đều \(B,C\) nên \(NB = NC\)\( \Leftrightarrow {2^2} + {\left( {1 - b} \right)^2} = {\left( { - 1} \right)^2} + {\left( { - 3 - b} \right)^2}\)\( \Leftrightarrow 8b = - 5 \Leftrightarrow b = - \frac{5}{8}\).
Điểm \(N\) có tung độ là \( - \frac{5}{8}\).
b) Ta có \(\overrightarrow {AB} = \left( {3;0} \right);\overrightarrow {AC} = \left( {0; - 4} \right)\).
Ta có \(\overrightarrow {AB} ,\overrightarrow {AC} \) không cùng phương nên \(A,B,C\) là ba đỉnh của một tam giác.
c) Có \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 3 \cdot 0 + 0 \cdot \left( { - 4} \right) = 0\).
Do đó tam giác \(ABC\) vuông tại \(A\).
d) Gọi \(D\left( {x;y} \right)\). Ta có \(\overrightarrow {AB} = \left( {3;0} \right);\overrightarrow {DC} = \left( { - 1 - x; - 3 - y} \right)\).
Để \(ABCD\) là hình bình hành thì \(\overrightarrow {AB} = \overrightarrow {DC} \)\[ \Leftrightarrow \left\{ \begin{array}{l} - 1 - x = 3\\ - 3 - y = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\y = - 3\end{array} \right. \Rightarrow D\left( { - 4; - 3} \right)\].
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Lời giải
Đường tròn \(\left( C \right)\) có tâm \(I\left( {2; - 1} \right)\) và \(R = 5\).
Vì tiếp tuyến \(d\) của đường tròn \(\left( C \right)\) song song với đường thẳng \(\Delta \) có dạng \(3x - 4y + c = 0,c \ne - 35\).
Lại có \(d\left( {I,d} \right) = R\)\( \Leftrightarrow \frac{{\left| {3 \cdot 2 - 4 \cdot \left( { - 1} \right) + c} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} }} = 5\)\( \Leftrightarrow \left| {10 + c} \right| = 25\)\( \Leftrightarrow \left[ \begin{array}{l}10 + c = 25\\10 + c = - 25\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}c = 15\\c = - 35\end{array} \right.\).
Vì \(c \ne - 35\) nên \(c = 15\). Do đó \(d:3x - 4y + 15 = 0\).
Suy ra \(b = - 4;c = 15\). Vậy \(b + c = 11\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) Đường thẳng \(\Delta :x - y + 3 = 0\) tiếp xúc với đường tròn \(\left( C \right)\).
b) Tiếp tuyến của đường tròn \(\left( C \right)\) tại \(A\) có phương trình \(x + 7y + 9 = 0\).
c) Điểm \(A\) thuộc đường tròn \(\left( C \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
