Cho đường thẳng \(\left( d \right):\,\,y = 2x + m\) và parabol \(\left( P \right):\,\,y = {x^2}\,,\) số nguyên \(m\) nhỏ nhất để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt là
Quảng cáo
Trả lời:
Chọn A
Hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) là nghiệm của phương trình
\({x^2} = 2x + m\) hay \({x^2} - 2x + m = 0\,\,\,\left( 1 \right).\)
Ta có: \(\Delta ' = 1 + m\).
Để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt thì phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt.
Suy ra \(\Delta ' > 0\) hay \(1 + m > 0\) hay \(m > - 1.\)
Mà \(m\) là số nguyên nhỏ nhất nên \(m = 0.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Gọi điểm cần tìm là \[A\left( {a\,;\,2a} \right)\,\left( {a \ne 0} \right)\].
Do điểm \[A\] thuộc parabol \[y = - {x^2}\] nên
\[2a = - {a^2}\]\[ \Leftrightarrow {a^2} + 2a = 0\]\[ \Leftrightarrow a\left( {a + 2} \right) = 0\]\[ \Leftrightarrow a = - 2\] (vì \[a \ne 0\]).
Vậy điểm cần tìm có tọa độ là \(\left( { - 2;\, - 4} \right)\).
Câu 2
Lời giải
Chọn D
Tứ giác có hai đường chéo vuông góc với nhau thì diện tích sẽ bằng nửa tích hai đường chéo.
Do vậy \(y = \frac{1}{2}{x^2}\,\left( {x > 0} \right)\) (vì độ dài đường chéo tứ giác là số dương).
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
