Câu hỏi:

02/02/2026 265 Lưu

Từ lan can một tòa nhà cách mặt đất \(18m\) bạn An ném một chiếc máy bay đồ chơi theo phương ngang xuống đất. Biết máy bay rơi xuống theo quỹ đạo là một đường parabol và sau 6 giây kể từ vị trí cao nhất đó, máy bay rơi chạm mặt đất. Tìm hàm số biểu thị quỹ đạo nhảy của máy bay đồ chơi. Suy ra độ cao của máy bay sau 3 giây.

Từ lan can một tòa nhà cách mặt đất \(18m\) bạn An ném một chiếc máy bay đồ chơi theo phương ngang xuống đất. Biết máy bay rơi xuống theo quỹ đạo là một đường parabol và sau 6 giây kể từ vị trí cao nhất đó (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Quỹ đạo máy bay là parabol có dạng: \((P):y = a{x^2}(a < 0)\).

Sau 6 giây kể từ vị trí cao nhất đó, máy bay rơi xuống đất nên khi \(y =  - 18\) thì \(x = 6\).

Khi đó \( - 18 = a{.6^2} \Rightarrow a = \frac{{ - 18}}{{36}} = \frac{{ - 1}}{2}\).

Vậy hàm số biểu thị quỹ đạo của máy bay đồ chơi là: \((P):y =  - \frac{1}{2}{x^2}\).

Thay \(x = 3\) vào \((P):y =  - \frac{1}{2}{x^2} \Rightarrow y =  - \frac{1}{2} \cdot {3^2} =  - 4,5\)

\( \Rightarrow {\rm{MB}} = 4,5\;{\rm{m}} \Rightarrow {\rm{MH}} = {\rm{BH}} - {\rm{MB}} = 18 - 4,5 = 13,5\;{\rm{m}}\)

Vậy sau 3 giây thì máy bay cách mặt đất \(13,5\;{\rm{m}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)\(A( - \sqrt 2 ;4) \in (P) \Rightarrow 4 = a{\left( { - \sqrt 2 } \right)^2} \Rightarrow a = 2\)

Vậy \(a = 2\) là giá trị cần tìm.

b) Ta có \(y = 2{x^2}\)

+ Vẽ \(\left( P \right)\): Học sinh tự vẽ nhé

+ Thay \(y = 2\) vào hàm số \(y = 2{x^2}\) ta có:

\(\begin{array}{l}2 = 2{x^2}\\x =  \pm 1\end{array}\)

\( \Rightarrow \left( {1;2} \right);\left( { - 1;2} \right)\)

+ Gọi \(M({x_0};{y_0}) \in (P) \Rightarrow {y_0} = 2x_{_0}^2\).

\(M\) cách đều \(Ox,\,\,Oy\) nên ta có:

\(\begin{array}{l}\left| {{x_0}} \right| = \left| {{y_0}} \right|\\\left| {{x_0}} \right| = \left| {2x_{_0}^2} \right|\\2x_{_0}^2 = \left| {{x_0}} \right|\end{array}\)

\(2x_{_0}^2 =  - {x_0}\) hoặc \(2x_{_0}^2 = {x_0}\)

\(2x_{_0}^2 + {x_0} = 0\) hoặc \(2x_{_0}^2 - {x_0} = 0\)

\({x_0}\left( {2{x_0} + 1} \right) = 0\) hoặc \({x_0}\left( {2{x_0} - 1} \right) = 0\)

Giải \({x_0}\left( {2{x_0} + 1} \right) = 0\)

\({x_0} = 0\) hoặc \({x_0} =  - \frac{1}{2}\)

Giải\({x_0}\left( {2{x_0} - 1} \right) = 0\)

\({x_0} = 0\) hoặc \({x_0} = \frac{1}{2}\)

Do đó \({x_0} \in \left\{ { - \frac{1}{2};0;\frac{1}{2}} \right\}\)

\( \Rightarrow {M_1}(0;0);{M_2}\left( {\frac{1}{2};\frac{1}{2}} \right);{M_3}\left( {\frac{{ - 1}}{2};\frac{1}{2}} \right).\)

Lời giải

Phương trình parabol của cổng trường có dạng: \((P):y = a{x^2}(a < 0)\).

\({\rm{OA}} = \frac{{{\rm{AB}}}}{2} = \frac{9}{2} = 4,5\;{\rm{m}};{\rm{OE}} = {\rm{OA}} - {\rm{AE}} = 4,5 - 0,5 = 4\;{\rm{m}}\). Vì \({\rm{OS}} = 7,6\;{\rm{m}} \Rightarrow {\rm{A}}(4,5; - 7,6)\).

\({\rm{A}}(4,5; - 7,6) \in (P):y = a{x^2} \Rightarrow  - 7,6 = a \cdot {(4,5)^2} \Rightarrow a = \frac{{ - 7,6}}{{4,{5^2}}} =  - \frac{{152}}{{405}}\)

Vậy \((P):y =  - \frac{{152}}{{405}}{x^2}\)

Thay \(x = 4\) vào \((P):y =  - \frac{{152}}{{405}}{x^2}\), ta có: \(y =  - \frac{{152}}{{405}}{4^2} \approx  - 6\)

\( \Rightarrow {\rm{HM}} = 6\;{\rm{m}} \Rightarrow {\rm{ME}} = {\rm{HE}} - {\rm{HM}} = 7,6 - 6 = 1,6\;{\rm{m}}\)

Vậy bạn sinh viên đó cao \(1,6\;{\rm{m}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP