Câu hỏi:

03/02/2026 33 Lưu

Gọi \({x_1};{x_2}\) là nghiệm của phương trình \[ - 2{x^2} - 6x - 1 = 0\]. Không giải phương trình tính giá trị của biểu thức \[N = \frac{1}{{{x_1} + 3}} + \frac{1}{{{x_2} + 3}}\]

A. \(6\).                     
B. \(2\).                    
C. \(5\).                           
D. \(4\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Phương trình \[ - 2{x^2} - 6x - 1 = 0\] có \[{\rm{\Delta }} = {( - 6)^2} - 4.( - 2).( - 1) = 28 > 0\] nên phương trình có hai nghiệm \[{x_1};{x_2}\]

Theo hệ thức Viète ta có \[\left\{ \begin{array}{l}{x_1} + {x_2} =  - \frac{b}{a}\\{x_1}.{x_2} = \frac{c}{a}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} + {x_2} =  - 3\\{x_1}.{x_2} = \frac{1}{2}\end{array} \right.\]

Ta có \[N = \frac{1}{{{x_1} + 3}} + \frac{1}{{{x_2} + 3}} = \frac{{{x_1} + {x_2} + 6}}{{{x_1}{x_2} + 3\left( {{x_1} + {x_2}} \right) + 9}} = \frac{{ - 3 + 6}}{{\frac{1}{2} + 3.( - 3) + 9}} = 6\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(6.\)                      
B. \(2.\)                    
C. \(5.\)                           
D. \(4.\)

Lời giải

Chọn A

Phương trình \( - 2{x^2} - 6x - 1 = 0\) có \(\Delta  = {\left( { - 6} \right)^2} - 4.\left( { - 2} \right).\left( { - 1} \right) = 28 > 0\) nên phương trình có hai nghiệm \({x_1};\,{x_2}\)

Theo định lí Viète ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - 3\\{x_1}{x_2} = \frac{1}{2}\end{array} \right.\)

Ta có \(N = \frac{1}{{{x_1} + 3}} + \frac{1}{{{x_2} + 3}} = \frac{{{x_1} + {x_2} + 6}}{{{x_1}{x_2} + 3\left( {{x_1} + {x_2}} \right) + 9}} = \frac{{ - 3 + 6}}{{\frac{1}{2} + 3.\left( { - 3} \right) + 9}} = 6.\)

Câu 2

A. \(\left\{ 2 \right\}.\)                              
B. \(\left\{ {0;\,\,2} \right\}.\)     
C. \(\left\{ 0 \right\}.\)                   
D. \(m < 2.\)

Lời giải

Chọn A

Phương trình \({x^2} - 2x + m - 1 = 0\) có hai nghiệm phân biệt khi \(\Delta ' = 2 - m > 0\) hay \(m < 2.\)

Ta có \(\left| {{x_1}{x_2}} \right| = 1\)

\(\left| {m - 1} \right| = 1\)

\(m = 0\) hoặc \(m = 2.\)

Vậy \(m = 0\) thỏa mãn.

Câu 3

A. \[m = \frac{1}{2}\].                              
B. \[m = \frac{{ - 1}}{2}\].      
C. \[m = \frac{{ \pm 1}}{2}\].                     
D. \[m = 2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(m = - 2.\)        
B. \(m = - 1.\)      
C. \(m = - 3.\)                           
D. \(m = - 4.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[m = \frac{1}{2}\].                              
B. \[m = \frac{{ - 1}}{2}\].      
C. \[m = \frac{{ \pm 1}}{2}\].                     
D. \[m = 2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(m = - 35.\)         
B. \(m = 35.\)          
C. \(m = \frac{3}{5}.\)             
D. \(m = - \frac{3}{5}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)
B. \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)
C. \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{b}{a}\\{x_1}{x_2} = \frac{a}{c}\end{array} \right..\)
D. \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{b}{a}\\{x_1}{x_2} = - \frac{c}{a}\end{array} \right..\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP