Cho phương trình \({x^2} - x - 10 = 0\). Chứng tỏ phương trình có hai nghiệm phân biệt \({x_1};{x_2}\) và tính \({x_1}^2 + {x_2}^2\).
Quảng cáo
Trả lời:
Ta có: \(a = 1;c = - 10 \Rightarrow ac < 0 \Rightarrow \) phương trình có hai nghiệm phân biệt \({x_1};{x_2}\). Theo định lí Viete, ta có: \({x_1} + {x_2} = 1;{x_1}{x_2} = - 10\). Vậy \({x_1}^2 + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 1 - 2.( - 10) = 21\).
Nhận xét: - Ta có \(ac < 0 \Rightarrow \frac{c}{a} < 0\) mà \({x_1}{x_2} = \frac{c}{a} \Rightarrow {x_1}{x_2} < 0\). Vậy khi \[a{\rm{ }}v\`a {\rm{ }}c\] trái dấu thì phương trình bậc hai có hai nghiệp phân biệt và trái dấu (chẳng hạn: \({x_1} < 0 < {x_2}\) ).
- Biểu thức \({x_1}^2 + {x_2}^2\) không thay đổi khi ta thay \({x_1}\) bởi \({x_2}\) và ngược lại, gọi là biểu thức đối xứng của \({x_1}\) và \({x_2}\). Bạn cần nhớ một vài công thức sau: \(S = {x_1} + {x_2}\), ta có:
\({x_1}^2 + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {S^2} - 2P\) (biểu thị qua tổng và tích các nghiệm)
\[{{\rm{x}}_1}^3 + {\rm{x}}_2^3 = \left( {{x_1} + {x_2}} \right)\left( {{x_1}^2 - {x_1}{x_2} + {x_2}^2} \right) = \left( {{x_1} + {x_2}} \right)\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 3{x_1}{x_2}} \right] = S\left( {{S^2} - 3P} \right) = {S^3} - 3SP\]
\({x_1}^4 + {x_2}^4 = {\left( {x_1^2 + x_2^2} \right)^2} - 2{x_1}^2{x_2}^2 = {\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right]^2} - 2{x_1}^2x_2^2 = {\left( {{S^2} - 2P} \right)^2} - 2{P^2}\)
\({\left| {{x_1} - {x_2}} \right|^2} = {\left( {{x_1} - {x_2}} \right)^2} = {x_1}^2 - 2{x_1}{x_2} + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = {S^2} - 4P\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(A\) thuộc đường thẳng \({\rm{y}} = 2{\rm{x}} - 1\) và hoành độ bằng 2 nên tung độ của \(A:y = 2.2 - 1 \Rightarrow y = 3\). Vậy \(A(2;3)\).
Lại có A là giao điểm của parabol \(y = (m + 1){x^2}\) và \(y = 2x - 1\) nên ta có \(3 = (m + 1) \cdot {(2)^2}\)
\( \Rightarrow 4\;{\rm{m}} + 4 = 3 \Rightarrow \;{\rm{m}} = - \frac{1}{4}\). Vậy \({\rm{y}} = \frac{3}{4}{{\rm{x}}^2}\).
b) Vẽ parabol (P): \(y = \frac{3}{4}{x^2}\).
Bảng giá trị:

Parabol \(({\rm{P}})\) có đỉnh O và nhận trục tung làm trục đối xứng.

Lời giải
Ta có: \(a = 3;b = - 7;c = - 4 \Rightarrow a.c = - 12 < 0\). Vậy phương trình luôn có hai nghiệm phân biệt \({x_1};{x_2}\).
Theo định lí Viète, ta có: \({x_1} + {x_2} = \frac{7}{3};{x_1}{x_2} = \frac{{ - 4}}{3}\).
a) Ta có: \({A^2} = {\left| {{x_1} - {x_2}} \right|^2} = {x_1}^2 - 2{x_1}{x_2} + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = {\left( {\frac{7}{3}} \right)^2} - 4.\left( {\frac{{ - 4}}{3}} \right) = \frac{{97}}{9} \Rightarrow A = \frac{{\sqrt {97} }}{3}\)
b) Ta có \(B = \frac{{x_1^3 + x_2^3}}{{{x_1}{x_2}}} = \frac{{{{\left( {{x_1} + {x_2}} \right)}^3} - 3{x_1}{x_2}.\left( {{x_1} + {x_2}} \right)}}{{{x_1}{x_2}}} = \frac{{{{\left( {\frac{7}{3}} \right)}^3} - 3.\left( {\frac{{ - 4}}{3}} \right).\frac{7}{3}}}{{\frac{{ - 4}}{3}}} = - \frac{{595}}{{36}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
