Cho phương trình \({x^2} - 2x + m + 2 = 0\). Tìm m để phương trình có nghiệm \({x_1};{x_2}\) thỏa mãn điều kiện \({x_1}^2 + {x_2}^2 = 10\).
Quảng cáo
Trả lời:
Ta có: \(a = 1;b = - 2 \Rightarrow b' = - 1;c = m + 2\). Phương trình đã cho có hai nghiệm \({x_1};{x_2}\) khi và chỉ khi
\(\Delta ' \ge 0 \Leftrightarrow {\left( { - 1} \right)^2} - \left( {m + 2} \right) \ge 0 \Leftrightarrow \;m \le - 1\)
Theo hệ thức Viète, ta có: \({x_1} + {x_2} = 2;{x_1}{x_2} = m + 2\). Vậy \({x_1}^2 + {x_2}^2 = 10 \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\)
\( \Leftrightarrow 4 - 2\left( {m + 2} \right) = 10 \Leftrightarrow - 2m = 10 \Leftrightarrow m = - 5{\rm{ }}\)(thỏa mãn điều kiện \(m \ge - 1\))
Đáp số: \(m = - 5\).
Cách khác: Giả sử phương trình đã cho có hai nghiệm \({x_1};{x_2}\). Theo hệ thức Viète, ta có:
\({x_1} + {x_2} = 2;{x_1}{x_2} = m + 2\) (Tương tự cách giải trên):
\({x_1}^2 + {x_2}^2 = 10 \Leftrightarrow 4 - 2\left( {\;m + 2} \right) = 10 \Leftrightarrow \;m = - 5\)
Thử lại: Với \(m = - 5\), ta có phương trình \({x^2} - 2x - 3 = 0\). Ta có \(a = 1;b = - 2;c = - 3 \Rightarrow ac = - 2 < 0 \Rightarrow \) phương trình có hai nghiệm.
Chú ý: Vì ta giả sử có nghiệm, để tìm được \(m\), sau đó ta phải thử lại. Nếu làm như cách thứ nhất, ta tìm điều kiện cho phương trình có nghiệm thì không cần thử lại.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(a = 1;b = - 2\;m \Rightarrow \;b' = - m;c = 2\;m - 3\). Phương trình đã cho có nghiệm \({x_1},{x_2}\) khi và chỉ khi
\(\left\{ {\begin{array}{*{20}{l}}{a \ne 0}\\{\Delta ' \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 \ne 0}\\{{{\left( { - m} \right)}^2} - \left( {2m - 3} \right) \ge 0}\end{array}} \right.} \right.\)
\( \Leftrightarrow {m^2} - 2m + 3 \ge 0 \Leftrightarrow {m^2} - 2m + 1 + 2 \ge 0 \Leftrightarrow {\left( {m - 1} \right)^2} + 2 \ge 0\) (luôn đúng với mọi \(m\) vì \({\left( {m - 1} \right)^2} \ge 0,\forall m\)) Vậy \(A = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 4{m^2} - 2\left( {2m - 3} \right) = 4{m^2} - 4m + 6 = \left( {4{m^2} - 4m + 1} \right) + 5n\)
\( = {(2m - 1)^2} + 5 \ge 5;\forall m\left( {{{(2m - 1)}^2} \ge 0,\forall m} \right)\)
Dấu “=” xảy ra khi và chỉ khi \(2m - 1 = 0 \Leftrightarrow m = \frac{1}{2}\)
Chú ý: Nếu ta không đặt điều kiện phương trình có nghiệm thì vẫn đúng đáp số, nhưng lời giải như vậy chưa chính xác.
Lời giải
Ta có 6 giờ 45 phút= \(\frac{{27}}{4}\)giờ.
Gọi vận tốc của tàu thủy khi nước yên lặng là \[x\,({\rm{km}}\,{\rm{/}}\,{\rm{h}},x > 4)\]
Suy ra vận tốc của tàu thủy khi xuôi dòng là \(x + 4\,(\;{\rm{km}}/{\rm{h}})\).
Vận tốc của tàu thủy khi ngược dòng là \(x - 4\,(\;{\rm{km}}/{\rm{h}})\).
Thời gian tàu thủy đi xuôi dòng \(120\;{\rm{km}}\) là \(\frac{{120}}{{x + 4}}\) (giờ).
Thời gian tàu thủy đi ngược dòng \(120\;{\rm{km}}\) là \(\frac{{120}}{{x - 4}}\) (giờ).
Theo đề Câu, thời gian cả đi lẫn về mất \(\frac{{27}}{4}\) giờ. Ta có phương trình
\(\frac{{120}}{{x + 4}} + \frac{{120}}{{x - 4}} = \frac{{27}}{4} \Leftrightarrow 9{x^2} - 320x - 144 = 0.\)
Ta có \(\Delta = {320^2} - 4 \cdot 9 \cdot ( - 144) = 107584 > 0\) nên phương trình có nghiệm \({x_1} = - \frac{4}{9}\) (loại); \({x_2} = 36\) (nhận).
Vậy vận tốc tàu thủy khi nước yên lặng là \(36\;{\rm{km}}/{\rm{h}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
