Câu hỏi:

28/01/2026 15 Lưu

Một xe tải có chiều rộng là \(2,4\;{\rm{m}}\) chiều cao là \(2,5\;{\rm{m}}\) muốn đi qua một cái cổng hình parabol. Biết khoảng cách giữa hai chân cổng là 4 m và khoảng cách từ đỉnh cổng tới mỗi chân cổng là \(2\sqrt 5 \;{\rm{m}}\) (bỏ qua độ dày của cổng).

a) Trong mặt phẳng tọa độ \(Oxy\) gọi parabol \((P):y = a{x^2}\) với a \( < 0\) là hình biểu diễn cổng mà xe tải muốn đi qua. Chứng minh \(a =  - 1\).

b) Hỏi xe tải có đi qua cổng được không? Tại sao?

Một xe tải có chiều rộng là \(2,4\;{\r (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Giả sử trên mặt phẳng tọa độ, độ dài các đoạn thẳng được tính theo đơn vị mét. Do khoảng cách giữa hai chân cổng là 4 m nên \({\rm{MA}} = {\rm{NA}} = 2\;{\rm{m}}\). Theo giả thiết ta có \({\rm{OM}} = {\rm{ON}} = 2\sqrt 5 \).

Xét  vuông tại \(A\), ta có: \({\rm{OA}} = \sqrt {{\rm{O}}{{\rm{M}}^2} - {\rm{A}}{{\rm{M}}^2}}  = \sqrt {{{(2\sqrt 5 )}^2} - {2^2}}  = 4\;{\rm{m}}\).

\( \Rightarrow {\rm{M}}(2; - 4) \in (P):y = a{x^2} \Rightarrow  - 4 = a{.2^2} \Rightarrow a =  - 1\).

Một xe tải có chiều rộng là \(2,4\;{\r (ảnh 2)

b) Để đáp ứng chiều cao trước hết xe tải phải đi vào chính giữa cổng.

\( \Rightarrow {\rm{AB}} = 2,5\;{\rm{m}} \Rightarrow {\rm{OB}} = {\rm{OA}} - {\rm{AB}} = 4 - 2,5 = 1,5\;{\rm{m}}\)

\(({\rm{HT}}):y =  - \frac{3}{2}\)

Đường thẳng này cắt Parabol tại 2 điểm có tọa độ thỏa mãn hệ: \(\left\{ {\begin{array}{*{20}{l}}{y =  - {x^2}}\\{y =  - \frac{3}{2}}\end{array}} \right.\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{x^2} = \frac{3}{2}}\\{y =  - \frac{3}{2}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{{3\sqrt 2 }}{2}}\\{y =  - \frac{3}{2}}\end{array}} \right.} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{x =  - \frac{{3\sqrt 2 }}{2}}\\{y =  - \frac{3}{2}}\end{array} \Rightarrow H\left( {\frac{{3\sqrt 2 }}{2}; - \frac{3}{2}} \right),T\left( { - \frac{{3\sqrt 2 }}{2}; - \frac{3}{2}} \right)} \right.\)

\( \Rightarrow {\rm{HT}} = 3\sqrt 2  \approx 4,24\;{\rm{m}} > 2,4\;{\rm{m}}.\)Vậy xe tải có thể đi qua cổng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(a = 1;b =  - 2\;m \Rightarrow \;b' =  - m;c = 2\;m - 3\). Phương trình đã cho có nghiệm \({x_1},{x_2}\) khi và chỉ khi

\(\left\{ {\begin{array}{*{20}{l}}{a \ne 0}\\{\Delta ' \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 \ne 0}\\{{{\left( { - m} \right)}^2} - \left( {2m - 3} \right) \ge 0}\end{array}} \right.} \right.\)

\( \Leftrightarrow {m^2} - 2m + 3 \ge 0 \Leftrightarrow {m^2} - 2m + 1 + 2 \ge 0 \Leftrightarrow {\left( {m - 1} \right)^2} + 2 \ge 0\) (luôn đúng với mọi \(m\) vì \({\left( {m - 1} \right)^2} \ge 0,\forall m\)) Vậy \(A = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 4{m^2} - 2\left( {2m - 3} \right) = 4{m^2} - 4m + 6 = \left( {4{m^2} - 4m + 1} \right) + 5n\)

\( = {(2m - 1)^2} + 5 \ge 5;\forall m\left( {{{(2m - 1)}^2} \ge 0,\forall m} \right)\)

Dấu “=” xảy ra khi và chỉ khi \(2m - 1 = 0 \Leftrightarrow m = \frac{1}{2}\)

Chú ý: Nếu ta không đặt điều kiện phương trình có nghiệm thì vẫn đúng đáp số, nhưng lời giải như vậy chưa chính xác.

Lời giải

Ta có 6 giờ 45 phút= \(\frac{{27}}{4}\)giờ.

Gọi vận tốc của tàu thủy khi nước yên lặng là \[x\,({\rm{km}}\,{\rm{/}}\,{\rm{h}},x > 4)\]

Suy ra vận tốc của tàu thủy khi xuôi dòng là \(x + 4\,(\;{\rm{km}}/{\rm{h}})\).

Vận tốc của tàu thủy khi ngược dòng là \(x - 4\,(\;{\rm{km}}/{\rm{h}})\).

Thời gian tàu thủy đi xuôi dòng \(120\;{\rm{km}}\) là \(\frac{{120}}{{x + 4}}\) (giờ).

Thời gian tàu thủy đi ngược dòng \(120\;{\rm{km}}\) là \(\frac{{120}}{{x - 4}}\) (giờ).

Theo đề Câu, thời gian cả đi lẫn về mất \(\frac{{27}}{4}\) giờ. Ta có phương trình

\(\frac{{120}}{{x + 4}} + \frac{{120}}{{x - 4}} = \frac{{27}}{4} \Leftrightarrow 9{x^2} - 320x - 144 = 0.\)

Ta có \(\Delta  = {320^2} - 4 \cdot 9 \cdot ( - 144) = 107584 > 0\) nên phương trình có nghiệm \({x_1} =  - \frac{4}{9}\) (loại); \({x_2} = 36\) (nhận).

Vậy vận tốc tàu thủy khi nước yên lặng là \(36\;{\rm{km}}/{\rm{h}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP