Câu hỏi:

28/01/2026 10 Lưu

Một người đi xe đạp quãng đường từ \(A\) đến \(B\) dài \(30\;{\rm{km}}\). Khi từ \(B\) về \(A\), người đó chọn con đường khác dài hơn \(6\;{\rm{km}}\) và đi với vân tốc lớn hơn vận tốc lúc đi là \(3\;{\rm{km}}/{\rm{h}}\), nên thời gian về ít hơn thời gian đi là 20 phút. Tính vận tốc lúc đi.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có 20 phút \( = \frac{1}{3}\) giờ. Gọi vận tốc lúc đi là \(x\,(\;{\rm{km}}/{\rm{h}},x > 0)\).

Suy ra thời gian đi quãng đường từ \(A\) đến \(B\) dài \(30\;{\rm{km}}\) hết \(\frac{{30}}{x}\) (h).

Khi về, người đó đi quãng đường dài hơn quãng đường lúc đi \(6\;{\rm{km}}\) và đi với vận tốc lớn hơn vận tốc lúc đi là \(3\;{\rm{km}}/{\rm{h}}\) nên thời gian hết là \(\frac{{36}}{{x + 3}}\) (h).

Theo đầu Câu, vì thời gian về ít hơn thời gian đi là \(\frac{1}{3}\) giờ nên có phương trình

\(\frac{{30}}{x} - \frac{{36}}{{x + 3}} = \frac{1}{3} \Leftrightarrow {x^2} + 21x - 270 = 0.\).

Ta có \(\Delta  = {21^2} - 4 \cdot ( - 270) = 1521 > 0\) nên phương trình có nghiệm \({x_1} =  - 30\) (loại); \({x_2} = 9\) (nhận).

Vậy vận tốc lúc đi là \(9\;{\rm{km}}/{\rm{h}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(a = 1;b =  - 2\;m \Rightarrow \;b' =  - m;c = 2\;m - 3\). Phương trình đã cho có nghiệm \({x_1},{x_2}\) khi và chỉ khi

\(\left\{ {\begin{array}{*{20}{l}}{a \ne 0}\\{\Delta ' \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 \ne 0}\\{{{\left( { - m} \right)}^2} - \left( {2m - 3} \right) \ge 0}\end{array}} \right.} \right.\)

\( \Leftrightarrow {m^2} - 2m + 3 \ge 0 \Leftrightarrow {m^2} - 2m + 1 + 2 \ge 0 \Leftrightarrow {\left( {m - 1} \right)^2} + 2 \ge 0\) (luôn đúng với mọi \(m\) vì \({\left( {m - 1} \right)^2} \ge 0,\forall m\)) Vậy \(A = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 4{m^2} - 2\left( {2m - 3} \right) = 4{m^2} - 4m + 6 = \left( {4{m^2} - 4m + 1} \right) + 5n\)

\( = {(2m - 1)^2} + 5 \ge 5;\forall m\left( {{{(2m - 1)}^2} \ge 0,\forall m} \right)\)

Dấu “=” xảy ra khi và chỉ khi \(2m - 1 = 0 \Leftrightarrow m = \frac{1}{2}\)

Chú ý: Nếu ta không đặt điều kiện phương trình có nghiệm thì vẫn đúng đáp số, nhưng lời giải như vậy chưa chính xác.

Lời giải

Ta có 6 giờ 45 phút= \(\frac{{27}}{4}\)giờ.

Gọi vận tốc của tàu thủy khi nước yên lặng là \[x\,({\rm{km}}\,{\rm{/}}\,{\rm{h}},x > 4)\]

Suy ra vận tốc của tàu thủy khi xuôi dòng là \(x + 4\,(\;{\rm{km}}/{\rm{h}})\).

Vận tốc của tàu thủy khi ngược dòng là \(x - 4\,(\;{\rm{km}}/{\rm{h}})\).

Thời gian tàu thủy đi xuôi dòng \(120\;{\rm{km}}\) là \(\frac{{120}}{{x + 4}}\) (giờ).

Thời gian tàu thủy đi ngược dòng \(120\;{\rm{km}}\) là \(\frac{{120}}{{x - 4}}\) (giờ).

Theo đề Câu, thời gian cả đi lẫn về mất \(\frac{{27}}{4}\) giờ. Ta có phương trình

\(\frac{{120}}{{x + 4}} + \frac{{120}}{{x - 4}} = \frac{{27}}{4} \Leftrightarrow 9{x^2} - 320x - 144 = 0.\)

Ta có \(\Delta  = {320^2} - 4 \cdot 9 \cdot ( - 144) = 107584 > 0\) nên phương trình có nghiệm \({x_1} =  - \frac{4}{9}\) (loại); \({x_2} = 36\) (nhận).

Vậy vận tốc tàu thủy khi nước yên lặng là \(36\;{\rm{km}}/{\rm{h}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP