Cho một số có hai chữ số. Tìm số đó, biết rằng tổng hai chữ số của nó nhỏ hơn số đó 6 lần. Nếu thêm 25 vào tích của hai chữ số đó sẽ được số viết theo thứ tự ngược lại với số đã cho.
Cho một số có hai chữ số. Tìm số đó, biết rằng tổng hai chữ số của nó nhỏ hơn số đó 6 lần. Nếu thêm 25 vào tích của hai chữ số đó sẽ được số viết theo thứ tự ngược lại với số đã cho.
Quảng cáo
Trả lời:
Gọi chữ số hàng chục là \(x\), chữ số hàng đơn vị là \(y\,(x,y \in \mathbb{N},0 < x \le 9,0 \le y \le 9)\).
Theo đề Câu, tổng hai chữ số của nó nhỏ hơn số đó 6 lần, ta có phương trình
\(6(x + y) = 10x + y{\rm{. }}\) (1)
Nếu thêm 25 vào tích của hai chữ số đó sẽ được số viết theo thứ tự ngược lại với số đã cho, ta có phương trình
\(xy + 25 = 10y + x{\rm{. }}\) (2)
Từ (1) suy ra \(x = \frac{{5y}}{4}\)thay vào (2) ta có \({y^2} - 9y + 20 = 0\).
Giải phương trình này, ta được \({y_1} = 5,{y_2} = 4\).
Với \({y_1} = 5\) thì \({x_1} = 6,25\) (không thỏa mãn).
Với \({y_2} = 4\) thì \({x_2} = 5\) (thỏa mãn).
Vậy số phải tìm là 54.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(a = 1;b = - 2\;m \Rightarrow \;b' = - m;c = 2\;m - 3\). Phương trình đã cho có nghiệm \({x_1},{x_2}\) khi và chỉ khi
\(\left\{ {\begin{array}{*{20}{l}}{a \ne 0}\\{\Delta ' \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 \ne 0}\\{{{\left( { - m} \right)}^2} - \left( {2m - 3} \right) \ge 0}\end{array}} \right.} \right.\)
\( \Leftrightarrow {m^2} - 2m + 3 \ge 0 \Leftrightarrow {m^2} - 2m + 1 + 2 \ge 0 \Leftrightarrow {\left( {m - 1} \right)^2} + 2 \ge 0\) (luôn đúng với mọi \(m\) vì \({\left( {m - 1} \right)^2} \ge 0,\forall m\)) Vậy \(A = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 4{m^2} - 2\left( {2m - 3} \right) = 4{m^2} - 4m + 6 = \left( {4{m^2} - 4m + 1} \right) + 5n\)
\( = {(2m - 1)^2} + 5 \ge 5;\forall m\left( {{{(2m - 1)}^2} \ge 0,\forall m} \right)\)
Dấu “=” xảy ra khi và chỉ khi \(2m - 1 = 0 \Leftrightarrow m = \frac{1}{2}\)
Chú ý: Nếu ta không đặt điều kiện phương trình có nghiệm thì vẫn đúng đáp số, nhưng lời giải như vậy chưa chính xác.
Lời giải
Ta có 6 giờ 45 phút= \(\frac{{27}}{4}\)giờ.
Gọi vận tốc của tàu thủy khi nước yên lặng là \[x\,({\rm{km}}\,{\rm{/}}\,{\rm{h}},x > 4)\]
Suy ra vận tốc của tàu thủy khi xuôi dòng là \(x + 4\,(\;{\rm{km}}/{\rm{h}})\).
Vận tốc của tàu thủy khi ngược dòng là \(x - 4\,(\;{\rm{km}}/{\rm{h}})\).
Thời gian tàu thủy đi xuôi dòng \(120\;{\rm{km}}\) là \(\frac{{120}}{{x + 4}}\) (giờ).
Thời gian tàu thủy đi ngược dòng \(120\;{\rm{km}}\) là \(\frac{{120}}{{x - 4}}\) (giờ).
Theo đề Câu, thời gian cả đi lẫn về mất \(\frac{{27}}{4}\) giờ. Ta có phương trình
\(\frac{{120}}{{x + 4}} + \frac{{120}}{{x - 4}} = \frac{{27}}{4} \Leftrightarrow 9{x^2} - 320x - 144 = 0.\)
Ta có \(\Delta = {320^2} - 4 \cdot 9 \cdot ( - 144) = 107584 > 0\) nên phương trình có nghiệm \({x_1} = - \frac{4}{9}\) (loại); \({x_2} = 36\) (nhận).
Vậy vận tốc tàu thủy khi nước yên lặng là \(36\;{\rm{km}}/{\rm{h}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
