Câu hỏi:

29/01/2026 4 Lưu

Đường tròn ngoại tiếp đa giác là đường tròn

A. tiếp xúc với tất cả các cạnh của đa giác đó.
B. đi qua tất cả các đỉnh của đa giác đó.
C. cắt tất cả các cạnh của đa giác đó.
D. đi qua tâm của đa giác đó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Đường tròn ngoại tiếp đa giác là đường tròn đi qua tất cả các đỉnh của đa giác đó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 2,5 cm.                  
B. \[1,5{\rm{ }}{\mathop{\rm cm}\nolimits} .\]       
C. 2 cm.                   
D. \(\sqrt 3 {\rm{ cm}}\).

Lời giải

Chọn A

Tam giác \[ABC\] vuông tại \[A\] có (ảnh 1)

Tam giác \[ABC\] vuông tại \[A\] có đường cao \[AH\] nên \(AB \cdot AC = A{H^2}\).

Mặt khác \(\frac{{AB}}{{AC}} = \frac{3}{4}\) hay \(AB = \frac{3}{4}AC\). Thế vào biểu thức trên ta được:

\(\frac{3}{4}A{C^2} = {\left( {\frac{{12}}{5}} \right)^2}\) hay \(AC = \frac{{8\sqrt 3 }}{5}\,\,\left( {{\rm{cm}}} \right)\).

Suy ra \[AB = \frac{3}{4} \cdot \frac{{8\sqrt 3 }}{5} = \frac{{6\sqrt 3 }}{5}\,\,\left( {{\rm{cm}}} \right)\].

Áp dụng định lý Pythagore vào tam giác \[ABC\] vuông tại \[A\] ta có: \(B{C^2} = A{B^2} + A{C^2}\)

Do đó \(BC = \sqrt {A{B^2} + A{C^2}}  = 2\sqrt 3 \,\,\left( {{\rm{cm}}} \right)\)

Tâm đường tròn ngoại tiếp tam giác \[ABC\] là trung điểm O của cạnh huyền \[BC\].

Vậy bán kính đường tròn ngoại tiếp tam giác \[ABC\] là \(R = \frac{{2\sqrt 3 }}{2} = \sqrt 3 \) (cm).

Câu 2

A. \(\frac{R}{{\sqrt 3 }}\).                        
B. \(R\sqrt 3 \).                               
C. \(R\sqrt 6 \).        
D. \(3R\).

Lời giải

Chọn B

i tiếp đường tròn \[\left( {O;{\rm{ }}R} \right)\] có cạnh là \[a.\] (ảnh 1)

Gọi tam giác đều \[ABC\] nội tiếp đường tròn \[\left( {O;{\rm{ }}R} \right)\] có cạnh là \[a.\]

Khi đó \[O\] là trọng tâm tam giác \[ABC\].

Gọi \[AH\] là đường trung tuyến.

Suy ra \(R = AO = \frac{2}{3}AH\) hay \(AH = \frac{{3R}}{2}\).

Áp dụng định lý Pythagore với tam giác \[ABH\] vuông tại \[H\], ta có: \(A{H^2} = A{B^2} - B{H^2}\)

Khi đó \[AH = \sqrt {A{B^2} - B{H^2}}  = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{a\sqrt 3 }}{2}\].

Do đó \(\frac{{3R}}{2} = \frac{{a\sqrt 3 }}{2}\) hay \(a = R\sqrt 3 \).

Câu 3

A. \(6\,\,{\rm{c}}{{\rm{m}}^2}\).            
B. \(6\sqrt 3 \,\,{\rm{c}}{{\rm{m}}^2}\).                     
C. \(3\,\,{\rm{c}}{{\rm{m}}^2}\).                
D. \(3\sqrt 3 \,\,{\rm{c}}{{\rm{m}}^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 26 cm.                   
B. 13 cm.                 
C. \(\frac{{13}}{2}\,\,{\rm{cm}}\).               
D. 6 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 3 cm.                     
B. 5 cm.                   
C. 7 cm.                             
D. 9 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. trung trực.             
B. đường cao.          
C. phân giác ngoài.                         
D. phân giác trong.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP