Cho tam giác \[ABC\] vuông tại \[A\], có \[AB = 5\,\,{\rm{cm}}\]; \[AC = 12\,\,{\rm{cm}}\]. Bán kính đường tròn ngoại tiếp tam giác \[ABC\] là
Quảng cáo
Trả lời:
Chọn C
![Vì tam giác \[ABC\] vuông t (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/24-1769679439.png)
Vì tam giác \[ABC\] vuông tại \[A\] nên tâm đường tròn ngoại tiếp là trung điểm O của cạnh huyền \[BC\], bán kính \(R = \frac{{BC}}{2}\).
Theo định lý Pythagore, ta có:
\(BC = \sqrt {A{C^2} + A{B^2}} = \sqrt {{5^2} + {{12}^2}} = 13\) (cm).
Vậy bán kính đường tròn ngoại tiếp tam giác \[ABC\] là \(R = \frac{{BC}}{2} = \frac{{13}}{2}\) (cm).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B

Ta có: \[A{B^2} + A{C^2} = B{C^2}\left( { = 100} \right)\].
Suy ra tam giác \[ABC\] vuông tại \[A\].
Do đó, tâm đường tròn ngoại tiếp tam giác \[ABC\] là trung điểm O của cạnh huyền \[BC\].
Đường kính đường tròn là: \[d = BC = 10{\rm{ cm}}\].
Suy ra, bán kính đường tròn ngoại tiếp tam giác \[ABC\] là \[R{\rm{ }} = \frac{d}{2}\; = 5{\rm{ }}\left( {{\rm{cm}}} \right)\].
Vậy \[R = 5\,\,{\rm{cm}}.\]
Câu 2
Lời giải
Chọn B

Đường tròn ngoại tiếp tam giác đều cạnh \(a\) có bán kính bằng \(\frac{{a\sqrt 3 }}{3}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
