Cho \[\left( {O;{\rm{ }}4} \right)\] có dây \[AC\] bằng cạnh hình vuông nội tiếp và dây \[BC\] bằng cạnh tam giác đều nội tiếp đường tròn đó (điểm \[C\] và \[A\] nằm cùng phía với \[BO\]). Số đo góc \[ACB\] là
Quảng cáo
Trả lời:
Chọn D
![Vì tam giác \[ABC\] vuông t (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/25-1769679481.png)
Vì \[AC\] bằng cạnh của hình vuông nội tiếp \[\left( O \right)\] nên số đo cung \[AC = 90^\circ \].
Vì \[BC\] bằng cạnh của tam giác đều nội tiếp \[\left( O \right)\] nên số đo cung \[BC = 120^\circ \].
Từ đó suy ra số đo cung \[AB\] bằng
Vì góc \[ACB\] là góc nội tiếp chắn cung \[AB\] nên \(\widehat {ACB} = \frac{{30^\circ }}{2} = 15^\circ \).
Vậy \(\widehat {ACB} = 15^\circ \).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
![Tam giác \[ABC\] vuông tại \[A\] có (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/29-1769679626.png)
Tam giác \[ABC\] vuông tại \[A\] có đường cao \[AH\] nên \(AB \cdot AC = A{H^2}\).
Mặt khác \(\frac{{AB}}{{AC}} = \frac{3}{4}\) hay \(AB = \frac{3}{4}AC\). Thế vào biểu thức trên ta được:
\(\frac{3}{4}A{C^2} = {\left( {\frac{{12}}{5}} \right)^2}\) hay \(AC = \frac{{8\sqrt 3 }}{5}\,\,\left( {{\rm{cm}}} \right)\).
Suy ra \[AB = \frac{3}{4} \cdot \frac{{8\sqrt 3 }}{5} = \frac{{6\sqrt 3 }}{5}\,\,\left( {{\rm{cm}}} \right)\].
Áp dụng định lý Pythagore vào tam giác \[ABC\] vuông tại \[A\] ta có: \(B{C^2} = A{B^2} + A{C^2}\)
Do đó \(BC = \sqrt {A{B^2} + A{C^2}} = 2\sqrt 3 \,\,\left( {{\rm{cm}}} \right)\)
Tâm đường tròn ngoại tiếp tam giác \[ABC\] là trung điểm O của cạnh huyền \[BC\].
Vậy bán kính đường tròn ngoại tiếp tam giác \[ABC\] là \(R = \frac{{2\sqrt 3 }}{2} = \sqrt 3 \) (cm).
Câu 2
Lời giải
Chọn B
![i tiếp đường tròn \[\left( {O;{\rm{ }}R} \right)\] có cạnh là \[a.\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/21-1769679365.png)
Gọi tam giác đều \[ABC\] nội tiếp đường tròn \[\left( {O;{\rm{ }}R} \right)\] có cạnh là \[a.\]
Khi đó \[O\] là trọng tâm tam giác \[ABC\].
Gọi \[AH\] là đường trung tuyến.
Suy ra \(R = AO = \frac{2}{3}AH\) hay \(AH = \frac{{3R}}{2}\).
Áp dụng định lý Pythagore với tam giác \[ABH\] vuông tại \[H\], ta có: \(A{H^2} = A{B^2} - B{H^2}\)
Khi đó \[AH = \sqrt {A{B^2} - B{H^2}} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}\].
Do đó \(\frac{{3R}}{2} = \frac{{a\sqrt 3 }}{2}\) hay \(a = R\sqrt 3 \).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.