Cho ngũ giác đều \[MNPQR\] có tâm \[O.\] Phép quay nào với tâm \[O\] biến ngũ giác đều \[MNPQR\] thành chính nó?
Quảng cáo
Trả lời:
Chọn B
![Cho ngũ giác đều \[MNPQR\] có tâm \[O.\] Phép quay nào với tâm \[O\] biến ngũ giác đều \[MNPQR\] thành chính nó? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/11-1769713058.png)
Các phép quay giữ nguyên ngũ giác đều \[MNPQR\] là:
⦁ Năm phép quay thuận chiều \[\alpha ^\circ \] tâm \[O\] với \[\alpha ^\circ \] lần lượt nhận các giá trị:
\[\alpha _1^o = \frac{{360^\circ }}{5} = 72^\circ ;\,\,\alpha _2^o = \frac{{2 \cdot 360^\circ }}{5} = 144^\circ ;\,\,\alpha _3^o = \frac{{3 \cdot 360^\circ }}{5} = 216^\circ ;\]
\[\alpha _4^o = \frac{{4 \cdot 360^\circ }}{5} = 288^\circ ;\,\,\alpha _5^o = \frac{{5 \cdot 360^\circ }}{5} = 360^\circ .\]
⦁ Ba phép quay ngược chiều \[\alpha ^\circ \] tâm \[O\] với \[\alpha ^\circ \] lần lượt nhận các giá trị:
\[\alpha _1^o = \frac{{360^\circ }}{5} = 72^\circ ;\,\,\alpha _2^o = \frac{{2 \cdot 360^\circ }}{5} = 144^\circ ;\,\,\alpha _3^o = \frac{{3 \cdot 360^\circ }}{5} = 216^\circ ;\]
\[\alpha _4^o = \frac{{4 \cdot 360^\circ }}{5} = 288^\circ ;\,\,\alpha _5^o = \frac{{5 \cdot 360^\circ }}{5} = 360^\circ .\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Tổng 6 góc của lục giác đều \[ABCDEF\] bằng tổng các góc trong hai tứ giác \[ABCD\] và \[ABEF.\]
Suy ra tổng 6 góc của lục giác đều \[ABCDEF\] bằng \[2 \cdot 360^\circ = 720^\circ .\]
Do tất cả các góc của lục giác đều bằng nhau nên số đo mỗi góc của lục giác đều bằng \[\frac{{720^\circ }}{6} = 120^\circ .\]
Ta có \[AF = AB\] (vì \[ABCDEF\] là lục giác đều) và \[OB = OF\] (vì \[O\] là tâm của lục giác đều \[ABCDEF).\]
Suy ra \[AO\] là đường trung trực của đoạn BF.
Vì \[AF = AB\] (chứng minh trên) nên tam giác \[ABF\] cân tại \[A.\]
Do đó \[AO\] vừa là đường trung trực, vừa là đường phân giác của tam giác \[ABF.\]
Vì vậy \[\widehat {OAB} = \frac{{\widehat {BAF}}}{2} = \frac{{120^\circ }}{2} = 60^\circ .\]
Ta có \[OB = OA = 4{\rm{ cm}}\] (vì \[O\] là tâm của lục giác đều \[ABCDEF).\]
Suy ra tam giác \[OAB\] cân tại O, mà \[\widehat {OAB} = 60^\circ \] (chứng minh trên).
Do đó tam giác \[OAB\] đều, suy ra \[AB = OB = OA = 4{\rm{ cm}}.\]
Vì vậy \[BC = CD = DE = EF = FA = AB = 4{\rm{ cm}}\] (vì \[ABCDEF\] là lục giác đều).
Vậy số đo mỗi cạnh của lục giác đều \[ABCDEF\] đều bằng nhau và bằng \[4{\rm{ cm}}.\]
Lời giải
Chọn D
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Tứ giác \[ABCD\] nội tiếp (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/10-1769712984.png)