\(M\) ở chính giữa nửa đường tròn tâm \(O\) đường kính \(AB\). Trên cung nhỏ lấy điểm \(C\) bất kì. Vẽ tiếp tuyến tại \(B\) của \(\left( O \right)\) cắt \(MC\) tại \(D\). Gọi \(H\) là giao điểm của \(MB\) và \(AC\). Kẻ \(HI\) vuông góc với \(AB\). Chứng minh rằng \(CA\) là tia phân giác của góc \(\widehat {MCI}\).
\(M\) ở chính giữa nửa đường tròn tâm \(O\) đường kính \(AB\). Trên cung nhỏ lấy điểm \(C\) bất kì. Vẽ tiếp tuyến tại \(B\) của \(\left( O \right)\) cắt \(MC\) tại \(D\). Gọi \(H\) là giao điểm của \(MB\) và \(AC\). Kẻ \(HI\) vuông góc với \(AB\). Chứng minh rằng \(CA\) là tia phân giác của góc \(\widehat {MCI}\).
Quảng cáo
Trả lời:

Dễ thấy (vì \(AB\) là đường kính); hay \(C\) thuộc đường tròn đường kính \(HB\).
Lại có (gt) nên \(I\) thuộc đường tròn đường kính \(HB\) nên bốn điểm \(C,H,I,B\) cùng thuộc đường tròn đường kính \(HB\). \( \Rightarrow \widehat {{\rm{HCI}}} = \widehat {{\rm{HBI}}}\) (1) (góc nội tiếp cùng chắn cung ).
Lại có \(\widehat {{\rm{HBI}}} = \widehat {{\rm{MCA}}}\) (góc nội tiếp cùng chắn cung \(MA\)) \( \Rightarrow \widehat {{\rm{MCA}}} = \widehat {{\rm{MBA}}}\), chứng tỏ \(CA\) là tia phân giác của góc \(\widehat {{\rm{MCI}}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có (1). Lại có \(Ax \bot Ay\) nên
Từ (1) và (2) \( \Rightarrow \widehat {{\rm{BAM}}} = \widehat {{\rm{DAN}}}\)nên hai tam giác vuông \(ABM\)và \(AND\)bằng nhau theo trường hợp g.c.g.
\( \Rightarrow {\rm{AM}} = {\rm{AN}}\)
b) Tam giác \(AMN\) vuông cân tại \(A\), có \(AO\) là đường trung tuyến nên đồng thời là đường cao hay \(AO \bot MN\) hay . Dễ thấy tứ giác \[ABMO\] có
nên \[ABMO\] là tứ giác nội tiếp.
Lại có , chứng tỏ bốn điểm \(A,O,D,N\) cùng thuộc một đường tròn đường kính \(AN\) hay tứ giác \[ANDO\]nội tiếp.
c) Ta có tứ giác\[\;ABMO\] nội tiếp (cmt) \( \Rightarrow \widehat {{\rm{BOM}}} = \widehat {{\rm{BAM}}}\) (góc nội tiếp cùng chắn cung ),\(\widehat {{\rm{BAM}}} = \widehat {{\rm{DAN}}}({\rm{cmt}})\). Lại có tứ giác \[ANDO\] nội tiếp (cmt) \( \Rightarrow \widehat {{\rm{DAN}}} = \widehat {{\rm{DON}}}\) (góc nội tiếp cùng chắn cung)
\( \Rightarrow \widehat {{\rm{BOM}}} = \widehat {{\rm{DON}}}\), mà ba điểm \(M,O,N\) thẳng hàng (gt)\( \Rightarrow B,D,O\)thẳng hàng.
Lời giải

a) Ta có \(\widehat {{\rm{ABC}}} = \widehat {{\rm{ADC}}}\) (góc nội tiếp cùng chắn cung ). Lại có ( \(AD\) là đường kính)
Do đó (g.g)
b) \( \Rightarrow AH = \frac{{AB.AC}}{{AD}} = \frac{{AB.AC}}{{2R}}\)
Do đó \({S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}\frac{{AB.AC}}{{2R}}.BC = \frac{{AB.AC.BC}}{{4R}} = \frac{{abc}}{{4R}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
