Câu hỏi:

30/01/2026 15 Lưu

Cho ngũ giác \(ABCDE\) có các cạnh bằng nhau và \(\widehat A = \widehat B = \widehat C = 108^\circ \). Ngũ giác \(ABCDE\) có phải là ngũ giác đều không ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho ngũ giác \(ABCDE\) có các cạnh bằng nhau và \(\widehat A = \widehat B = \widehat C = 108^\circ \). Ngũ giác \(ABCDE\) có phải là ngũ giác đều không ? (ảnh 1)

Ta có : \(AB = BC = CD = DE = EA\,\,\left( {gt} \right)\,\,\left( * \right)\)

Xét tam giác \(ABE\) có \(AB = AE\,\,\) (gt)

Nên \(\Delta ABE\) cân tại A có \(\widehat A = 108^\circ \)

\( \Rightarrow {\widehat B_1} = {\widehat E_1} = \frac{{180^\circ  - \widehat A}}{2} = \frac{{180^\circ  - 108^\circ }}{2} = 36^\circ \)

Tương tự với tam giác \(BCD\), ta có : \({\widehat B_3} = {\widehat D_1} = 36^\circ \)

Lại có \(\widehat {ABC} = {\widehat B_1} + {\widehat B_2} + {\widehat B_3} = 108^\circ \)

\( \Rightarrow {\widehat B_2} = 108^\circ  - \left( {{{\widehat B}_1} + {{\widehat B}_3}} \right) = 108^\circ  - \left( {36^\circ  + 36^\circ } \right) = 36^\circ \)

Dễ thấy \(\Delta ABE = \Delta CBD\,\,\left( {c.g.c} \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình vuông \(ABCD\) có độ dài cạnh (ảnh 1)

a) Ta có BAM^+MAD^=BAD^=90° (1). Lại có \(Ax \bot Ay\) nên xAy^=90°   hay MAD^+DAN^=90°(2)

Từ (1) và (2) \( \Rightarrow \widehat {{\rm{BAM}}} = \widehat {{\rm{DAN}}}\)nên hai tam giác vuông \(ABM\)và \(AND\)bằng nhau theo trường hợp g.c.g.

\( \Rightarrow {\rm{AM}} = {\rm{AN}}\)

b) Tam giác \(AMN\) vuông cân tại \(A\), có \(AO\) là đường trung tuyến nên đồng thời là đường cao hay \(AO \bot MN\) hay AOM^=90°. Dễ thấy tứ giác \[ABMO\] có ABM^=AOM^=90°

ABM^+AOM^=180° nên \[ABMO\] là tứ giác nội tiếp.

Lại có AON^=ADN^=90°, chứng tỏ bốn điểm \(A,O,D,N\) cùng thuộc một đường tròn đường kính \(AN\) hay tứ giác \[ANDO\]nội tiếp.

c) Ta có tứ giác\[\;ABMO\] nội tiếp (cmt) \( \Rightarrow \widehat {{\rm{BOM}}} = \widehat {{\rm{BAM}}}\) (góc nội tiếp cùng chắn cung ),\(\widehat {{\rm{BAM}}} = \widehat {{\rm{DAN}}}({\rm{cmt}})\). Lại có tứ giác \[ANDO\] nội tiếp (cmt) \( \Rightarrow \widehat {{\rm{DAN}}} = \widehat {{\rm{DON}}}\) (góc nội tiếp cùng chắn cung)

\( \Rightarrow \widehat {{\rm{BOM}}} = \widehat {{\rm{DON}}}\), mà ba điểm \(M,O,N\) thẳng hàng (gt)\( \Rightarrow B,D,O\)thẳng hàng.

Lời giải

Cho tam giác \(ABC\) có các đư (ảnh 1)

a) Dễ thấy AEH^=AFH^=90° (gt).

Tứ giác \[AEHF\] có AEH^+AFH^=180° (gt) nên nội tiếp đường tròn tâm \(I\).

b) Ta có tam giác \(BEC\) vuông tại \(E\) (gt), \(EM\) là trung tuyến

\( \Rightarrow EM = BM = CM\) hay  cân tại M \[ \Rightarrow \widehat {{B_2}} = \widehat {{E_2}}\]

Lại có \(H,E\) thuộc đường tròn tâm \(I\) nên  cân tại I \( \Rightarrow \widehat {{H_2}} = \widehat {{E_1}}\) mà \(\widehat {{H_1}} = \widehat {{H_2}}\) (đối đỉnh) \( \Rightarrow \widehat {{E_1}} = \widehat {{H_2}}\)

Gọi K là chân đường cao kẻ từ A đến BC, ta có tam giác BKH vuông tại K

Gọi K là chân đường cao kẻ từ A đến BC, ta có tam giác BKH vuông tại K

B2^+H2^=90° mà B2^=E2^,H2^=E1^(cmt)E2^+E1^=90° hay IEM^=90°MEIE

Chứng tỏ \(ME\) tiếp xúc với đường tròn \(\left( I \right)\)ngoại tiếp tứ giác \[AEHF\].

Chứng minh tương tự ta có \(MF\) tiếp xúc với \(\left( I \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP