Câu hỏi:

30/01/2026 22 Lưu

Cho hình vuông \(ABCD\) có độ dài cạnh bằng\(a\). Góc vuông \[xAy\] thay đổi sao cho tia \(Ax\) cắt đoạn thẳng \(BC\) tại \(M\) và tia \(Ay\) cắt đoạn thẳng \(CD\) kéo dài tại \(N\).

a) Chứng minh hai tam giác \[ABM{\rm{ }}v\`a {\rm{ }}AND\] bằng nhau;

b) Gọi \(O\) là trung điểm của \(MN\). Chứng minh \[ABMO{\rm{ }}v\`a {\rm{ }}ANDO\]là các tứ giác nội tiếp;

c) Chứng minh ba điểm \(B,D,O\) thẳng hàng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình vuông \(ABCD\) có độ dài cạnh (ảnh 1)

a) Ta có BAM^+MAD^=BAD^=90° (1). Lại có \(Ax \bot Ay\) nên xAy^=90°   hay MAD^+DAN^=90°(2)

Từ (1) và (2) \( \Rightarrow \widehat {{\rm{BAM}}} = \widehat {{\rm{DAN}}}\)nên hai tam giác vuông \(ABM\)và \(AND\)bằng nhau theo trường hợp g.c.g.

\( \Rightarrow {\rm{AM}} = {\rm{AN}}\)

b) Tam giác \(AMN\) vuông cân tại \(A\), có \(AO\) là đường trung tuyến nên đồng thời là đường cao hay \(AO \bot MN\) hay AOM^=90°. Dễ thấy tứ giác \[ABMO\] có ABM^=AOM^=90°

ABM^+AOM^=180° nên \[ABMO\] là tứ giác nội tiếp.

Lại có AON^=ADN^=90°, chứng tỏ bốn điểm \(A,O,D,N\) cùng thuộc một đường tròn đường kính \(AN\) hay tứ giác \[ANDO\]nội tiếp.

c) Ta có tứ giác\[\;ABMO\] nội tiếp (cmt) \( \Rightarrow \widehat {{\rm{BOM}}} = \widehat {{\rm{BAM}}}\) (góc nội tiếp cùng chắn cung ),\(\widehat {{\rm{BAM}}} = \widehat {{\rm{DAN}}}({\rm{cmt}})\). Lại có tứ giác \[ANDO\] nội tiếp (cmt) \( \Rightarrow \widehat {{\rm{DAN}}} = \widehat {{\rm{DON}}}\) (góc nội tiếp cùng chắn cung)

\( \Rightarrow \widehat {{\rm{BOM}}} = \widehat {{\rm{DON}}}\), mà ba điểm \(M,O,N\) thẳng hàng (gt)\( \Rightarrow B,D,O\)thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác \(ABC\) có các đư (ảnh 1)

a) Dễ thấy AEH^=AFH^=90° (gt).

Tứ giác \[AEHF\] có AEH^+AFH^=180° (gt) nên nội tiếp đường tròn tâm \(I\).

b) Ta có tam giác \(BEC\) vuông tại \(E\) (gt), \(EM\) là trung tuyến

\( \Rightarrow EM = BM = CM\) hay  cân tại M \[ \Rightarrow \widehat {{B_2}} = \widehat {{E_2}}\]

Lại có \(H,E\) thuộc đường tròn tâm \(I\) nên  cân tại I \( \Rightarrow \widehat {{H_2}} = \widehat {{E_1}}\) mà \(\widehat {{H_1}} = \widehat {{H_2}}\) (đối đỉnh) \( \Rightarrow \widehat {{E_1}} = \widehat {{H_2}}\)

Gọi K là chân đường cao kẻ từ A đến BC, ta có tam giác BKH vuông tại K

Gọi K là chân đường cao kẻ từ A đến BC, ta có tam giác BKH vuông tại K

B2^+H2^=90° mà B2^=E2^,H2^=E1^(cmt)E2^+E1^=90° hay IEM^=90°MEIE

Chứng tỏ \(ME\) tiếp xúc với đường tròn \(\left( I \right)\)ngoại tiếp tứ giác \[AEHF\].

Chứng minh tương tự ta có \(MF\) tiếp xúc với \(\left( I \right)\).

Lời giải

Phép quay ngược chiều \(60^\circ \) tâm \(O\) biến các điểm \(A,B,C\) lần lượt thành các điểm\(D,E,F\)\( \Rightarrow \) các tam giác \(AOD,\,DOB,\,BOE,\,EOC,\,COF\) là các tam giác đều

\( \Rightarrow \)\(AD = DB = BE = EC = CF\)và \(\widehat {ADB} = \widehat {DBE} = \widehat {BEC} = \widehat {ECF} = \widehat {CFA} = \widehat {FAD} = 120^\circ \)

Do đó \(ADBECF\) là một lục giác đều.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP