Câu hỏi:

03/02/2026 10 Lưu

Trong không gian với hệ tọa độ\(Oxyz\) ,  cho 3 điểm \(A\left( {a;0;0} \right)\), \(B\left( {0;b;0} \right)\), \(C\left( {0;0;c} \right)\) với \(a,\,\,b,\,\,c\) đều dương.

a) Mặt phẳng \(\left( {ABC} \right)\) có phương trình \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\)

Đúng
Sai

b) Mặt phẳng \(\left( {ABC} \right)\) đi qua điểm \(G\left( {1;2;3} \right)\) sao cho \(G\) là trọng tâm \(\Delta ABC\)là \(6x + 3y + 2z + 18 = 0\)

Đúng
Sai

c) Mặt phẳng \(\left( {ABC} \right)\) đi qua điểm \(H\left( {1;1;1} \right)\) sao cho \(H\) là trực tâm \(\Delta ABC\)là \(x + y + z - 3 = 0\)

Đúng
Sai
d) Mặt phẳng \(\left( {ABC} \right)\) đi qua điểm \(M\left( {2; - 2;3} \right)\) sao cho độ dài \(OA,OB,OC\)theo thứ tự tạo thành cấp số cộng có công sai bằng \(2\). Khoảng cách từ gốc tọa độ \(O\) tới mặt phẳng \(\left( \alpha  \right)\) bằng \(\frac{m}{n}\) với \(\frac{m}{n}\) là phân số tối giản, khi đó \(T = m + n = 19\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a)   Đúng

Theo phương trình mặt phẳng theo đoạn chắn ta có mặt phẳng \(\left( {ABC} \right)\) có phương trình \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\)

b)   Sai

Vì \(G\) là trọng tâm \(\Delta ABC\) ta có \(\left\{ {\begin{array}{*{20}{c}}{\frac{a}{3} = 1}\\{\frac{b}{3} = 2}\\{\frac{c}{3} = 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 3}\\{b = 6}\\{c = 9}\end{array}} \right.\)

Mặt phẳng \(\left( {ABC} \right)\) có phương trình \(\frac{x}{3} + \frac{y}{6} + \frac{z}{9} = 1 \Leftrightarrow \)\(6x + 3y + 2z - 18 = 0\)

c)   Đúng

Vì \(H\left( {1;1;1} \right)\) là trực tâm \(\Delta ABC\) ta có \(\left\{ {\begin{array}{*{20}{c}}{H \in \left( {ABC} \right)}\\{\overrightarrow {HA} .\overrightarrow {BC}  = 0}\\{\overrightarrow {HB} .\overrightarrow {AC}  = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1}\\{ - b + c = 0}\\{a - c = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 3}\\{b = 3}\\{c = 3}\end{array}} \right.\)

Phương trình \(\left( {ABC} \right)\)là: \(x + y + z - 3 = 0\)

d)   Đúng

Giả sử mặt phẳng \(\left( \alpha  \right)\) cắt tia \[Ox\] tại điểm có hoành độ bằng \(a\) \(\left( {a > 0} \right)\) khi đó phương trình mặt phẳng \(\left( \alpha  \right)\) có dạng \(\frac{x}{a} + \frac{y}{{a + 2}} + \frac{z}{{a + 4}} = 1\).

Do \(\left( \alpha  \right)\) đi qua điểm \(M\left( {2; - 2;3} \right)\) nên ta có \(\frac{2}{a} + \frac{{ - 2}}{{a + 2}} + \frac{3}{{a + 4}} = 1\)\( \Leftrightarrow a = 2\).

Vậy \(\left( \alpha  \right)\) cắt \[Ox,Oy,Oz\] lần lượt tại \(A\left( {2;0;0} \right)\), \(B\left( {0;4;0} \right)\),\(C\left( {0;0;6} \right)\).

Gọi \(d = d\left( {O,\left( {ABC} \right)} \right)\).

Áp dụng công thức tính nhanh ta có \(\frac{1}{{{d^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}} = \frac{1}{{{2^2}}} + \frac{1}{{{4^2}}} + \frac{1}{{{6^2}}} = \frac{{49}}{{144}}\)\( \Rightarrow {d^2} = \frac{{144}}{{49}} \Rightarrow d = \frac{{12}}{7}\).

Vậy: \(T = m + n = 19\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong tiết thể dục học về kĩ thuật chuyền bóng hơi, Nam và An đang tập chuyền bóng cho nhau (ảnh 3)

Chọn hệ trục như hình vẽ. Gọi \(M\) là điểm mà quả bóng chạm đất.

Khi đó \({x_M} = 0,5\), \({y_M} = \sqrt {4,{5^2} - 0,{5^2}}  = 2\sqrt 5 \)

 Vì \(\left( \alpha  \right) \bot \left( {Oxy} \right)\) nên \(\left( \alpha  \right)\) có véc tơ chỉ phương \(\overrightarrow k  = \left( {0;0;1} \right)\).

 Mà \(\left( \alpha  \right)\) có véc tơ chỉ phương \(\overrightarrow {OM}  = \left( {0,5;2\sqrt 5 ;0} \right)\)

Khi đó véc tơ pháp tuyến của \(\left( \alpha  \right)\) là \(\overrightarrow {{n_\alpha }}  = \left[ {\overrightarrow k ,\overrightarrow {OM} } \right] = \left( { - 2\sqrt 5 ;0,5;0} \right)\).

Vậy \(\left( \alpha  \right): - 2\sqrt 5 x + 0,5y = 0\) nên \(a =  - 2\sqrt 5 ;b = 0,5;c = 0;d = 0 \Rightarrow a + b + c + d \approx  - 4,5\).

Câu 2

a) \[\overrightarrow {AB}  = \left( {0;1;1} \right)\].

Đúng
Sai

b) Tích có hướng của hai vectơ \[\overrightarrow {AB} ,\overrightarrow {AC} \] là \[\overrightarrow a  = \left( { - 1;3; - 3} \right)\]. 

Đúng
Sai

c) \(\overrightarrow {BC} ,\overrightarrow b  = \left( {6; - 2; - 4} \right)\) là cặp vectơ chỉ phương của mặt phẳng\[\left( {ABC} \right)\].

Đúng
Sai
d) Vectơ pháp tuyến của mặt phẳng \[\left( {AOB} \right)\] là: \[\overrightarrow n  = \left( {1;1;2} \right)\].
Đúng
Sai

Lời giải

a) Đúng.

\[\overrightarrow {AB}  = \left( {{x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A}} \right) = \left( {0;1;1} \right)\]

b) Đúng.

Ta có: \[\overrightarrow {AB}  = \left( {0;1;1} \right),\overrightarrow {AC}  = \left( {3;0; - 1} \right)\]

\[\overrightarrow a  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 1;3; - 3} \right)\]

c) Sai.

Ta có: \[\overrightarrow {BC}  = \left( {3; - 1; - 2} \right)\]

Do đó \(\overrightarrow b  = 2\overrightarrow {BC} \) nên \(\overrightarrow {BC} ,\overrightarrow b \) là hai vectơ cùng phương. Do đó \(\overrightarrow {BC} ,\overrightarrow b \) không phải là cặp vectơ chỉ phương của mặt phẳng \[\left( {ABC} \right)\]. 

d) Sai

Mặt phẳng \[\left( {AOB} \right)\] có cặp vectơ chỉ phương \[\overrightarrow {OA}  = \left( {1;1;1} \right),\overrightarrow {OB}  = \left( {1;2;2} \right)\] nên có vectơ pháp tuyến là: \[\overrightarrow n  = \left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right] = \left( {0; - 1;1} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP