Câu hỏi:

04/02/2026 8 Lưu

Trong không gian \[Oxyz\], cho điểm \(A\left( {2;\,1;\,3} \right)\), đường thẳng \(d:\frac{{x + 1}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 2}}{2}\) và mặt phẳng \[\left( P \right):x + y - 2z + 2 = 0\]. Phương trình chính tắc của đường thẳng \[\Delta \] đi qua \(A\), song song với mặt phẳng \(\left( P \right)\) và vuông góc với đường thẳng \(d\) có dạng:\(\frac{{x + a}}{b} = \frac{{y - 5}}{c} = \frac{{z + d}}{3}\). Giá trị của biểu thức \(M = a + b + c + d\)bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

\(M = - 5\)

Đường thẳng \[d\] có 1 VTCP \[\overrightarrow {{u_d}}  = \left( {1;\, - 2;2} \right)\]

Mặt phẳng \(\left( P \right)\) có 1 VTPT \[\overrightarrow n  = \left( {1;1; - 2} \right)\], gọi  \[\overrightarrow u \] là 1 VTCP của đường thẳng \[\Delta \]

Ta có: \(\left\{ \begin{array}{l}\Delta  \bot d\\\Delta //\left( P \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow u  \bot \overrightarrow {{u_d}} \\\overrightarrow u  \bot \overrightarrow n \end{array} \right. \Rightarrow \overrightarrow u  = \left[ {\overrightarrow {{u_d}} ,\overrightarrow n } \right] = \left( {2;4;3} \right)\).

Suy ra PTTS của đường thẳng \[\Delta \] :\[\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 + 4t\\z = 3 + 3t\end{array} \right.\]. Chọn \(t = 1 \Rightarrow \Delta \)đi qua điểm \(M\left( {5;5;6} \right)\)

Suy ra PTCT của đường thẳng \[\Delta \]: \(\frac{{x - 5}}{2} = \frac{{y - 5}}{4} = \frac{{z - 6}}{3}\)\( \Rightarrow a =  - 5,b = 2,c = 4,d =  - 6 \Rightarrow M =  - 5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách 1:

Ta có: Trong thời gian từ \(0\) đến \(3\)giây phương trình mô tả quỹ đạo chuyển động của viên đạn là:

                                        \(d:\left\{ \begin{array}{l}x = 1 + \frac{1}{3}t\\y = 2 + \frac{1}{3}t\\z = 4 + \frac{2}{3}t\end{array} \right.\)

với \(t = 3\) ta được điểm \[M\left( {2;\,3;\,6} \right)\].

Cách 2: Sau 3 giây viên đạn sẽ tới mục tiêu là điểm \(M\) sao cho \(\overrightarrow {AM}  = 3\overrightarrow v \)

            \( \Rightarrow \left\{ \begin{array}{l}{x_M} = 1 + 1 = 2\\{y_M} = 2 + 1 = 3\\{z_M} = 4 + 2 = 6\end{array} \right. \Rightarrow M\left( {2;\,3;\,6} \right)\)

Câu 2

a) Điểm \[M\left( {1;2;1} \right)\] thuộc đường thẳng \[d\].

Đúng
Sai

b) Đường thẳng \[d\] có một vectơ chỉ phương \[\overrightarrow u  = \left( {2; - 1;1} \right)\].

Đúng
Sai

c) Đường thẳng \[\Delta \] đi qua điểm \[A\] và song song với đường thẳng \[d\] có phương trình tham số là: \[\left\{ \begin{array}{l}x = 2 + 2t\\y = 3 + t\\z = 4 + t\end{array} \right.,\,t \in \mathbb{R}\].

Đúng
Sai
d) Đường thẳng \[\Delta \] đi qua điểm \[A\] và song song với đường thẳng \[d\] có phương trình chính tắc là: \[\frac{x}{2} = \frac{{y - 4}}{{ - 1}} = \frac{{z - 3}}{1}\].
Đúng
Sai

Lời giải

a) Đ

b) Đ

c) S

d) Đ

 

* Phương án a) đúng.

* Phương án b) đúng.

* Phương án c) sai: Đường thẳng \[\Delta \] đi qua điểm \[A\] và song song với đường thẳng \[d\] nên có một vectơ chỉ phương \[\overrightarrow {{u_\Delta }}  = \overrightarrow u  = \left( {2; - 1;1} \right)\]. Suy ra phương trình tham số đường thẳng \[\Delta \] là: \[\left\{ \begin{array}{l}x = 2 + 2t\\y = 3 - t\\z = 4 + t\end{array} \right.,\,t \in \mathbb{R}\].

* Phương án d) đúng:  Đường thẳng \[\Delta \] đi qua điểm \[A\] và song song với đường thẳng \[d\] có phương trình chính tắc là: \[\frac{x}{2} = \frac{{y - 4}}{{ - 1}} = \frac{{z - 3}}{1}\].