Trong không gian \[Oxyz\], cho điểm \(A\left( {2;\,1;\,3} \right)\), đường thẳng \(d:\frac{{x + 1}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 2}}{2}\) và mặt phẳng \[\left( P \right):x + y - 2z + 2 = 0\]. Phương trình chính tắc của đường thẳng \[\Delta \] đi qua \(A\), song song với mặt phẳng \(\left( P \right)\) và vuông góc với đường thẳng \(d\) có dạng:\(\frac{{x + a}}{b} = \frac{{y - 5}}{c} = \frac{{z + d}}{3}\). Giá trị của biểu thức \(M = a + b + c + d\)bằng bao nhiêu?
Quảng cáo
Trả lời:
Đáp án:
Đường thẳng \[d\] có 1 VTCP \[\overrightarrow {{u_d}} = \left( {1;\, - 2;2} \right)\]
Mặt phẳng \(\left( P \right)\) có 1 VTPT \[\overrightarrow n = \left( {1;1; - 2} \right)\], gọi \[\overrightarrow u \] là 1 VTCP của đường thẳng \[\Delta \]
Ta có: \(\left\{ \begin{array}{l}\Delta \bot d\\\Delta //\left( P \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow u \bot \overrightarrow {{u_d}} \\\overrightarrow u \bot \overrightarrow n \end{array} \right. \Rightarrow \overrightarrow u = \left[ {\overrightarrow {{u_d}} ,\overrightarrow n } \right] = \left( {2;4;3} \right)\).
Suy ra PTTS của đường thẳng \[\Delta \] :\[\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 + 4t\\z = 3 + 3t\end{array} \right.\]. Chọn \(t = 1 \Rightarrow \Delta \)đi qua điểm \(M\left( {5;5;6} \right)\)
Suy ra PTCT của đường thẳng \[\Delta \]: \(\frac{{x - 5}}{2} = \frac{{y - 5}}{4} = \frac{{z - 6}}{3}\)\( \Rightarrow a = - 5,b = 2,c = 4,d = - 6 \Rightarrow M = - 5\).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Cách 1:
Ta có: Trong thời gian từ \(0\) đến \(3\)giây phương trình mô tả quỹ đạo chuyển động của viên đạn là:
\(d:\left\{ \begin{array}{l}x = 1 + \frac{1}{3}t\\y = 2 + \frac{1}{3}t\\z = 4 + \frac{2}{3}t\end{array} \right.\)
với \(t = 3\) ta được điểm \[M\left( {2;\,3;\,6} \right)\].
Cách 2: Sau 3 giây viên đạn sẽ tới mục tiêu là điểm \(M\) sao cho \(\overrightarrow {AM} = 3\overrightarrow v \)
\( \Rightarrow \left\{ \begin{array}{l}{x_M} = 1 + 1 = 2\\{y_M} = 2 + 1 = 3\\{z_M} = 4 + 2 = 6\end{array} \right. \Rightarrow M\left( {2;\,3;\,6} \right)\)Câu 2
a) Điểm \[M\left( {1;2;1} \right)\] thuộc đường thẳng \[d\].
b) Đường thẳng \[d\] có một vectơ chỉ phương \[\overrightarrow u = \left( {2; - 1;1} \right)\].
c) Đường thẳng \[\Delta \] đi qua điểm \[A\] và song song với đường thẳng \[d\] có phương trình tham số là: \[\left\{ \begin{array}{l}x = 2 + 2t\\y = 3 + t\\z = 4 + t\end{array} \right.,\,t \in \mathbb{R}\].
Lời giải
|
a) Đ |
b) Đ |
c) S |
d) Đ |
* Phương án a) đúng.
* Phương án b) đúng.
* Phương án c) sai: Đường thẳng \[\Delta \] đi qua điểm \[A\] và song song với đường thẳng \[d\] nên có một vectơ chỉ phương \[\overrightarrow {{u_\Delta }} = \overrightarrow u = \left( {2; - 1;1} \right)\]. Suy ra phương trình tham số đường thẳng \[\Delta \] là: \[\left\{ \begin{array}{l}x = 2 + 2t\\y = 3 - t\\z = 4 + t\end{array} \right.,\,t \in \mathbb{R}\].
* Phương án d) đúng: Đường thẳng \[\Delta \] đi qua điểm \[A\] và song song với đường thẳng \[d\] có phương trình chính tắc là: \[\frac{x}{2} = \frac{{y - 4}}{{ - 1}} = \frac{{z - 3}}{1}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.