Trong không gian \(Oxyz\). Phương trình tham số của đường thẳng \(d\) đi qua \(A\left( {1;1;3} \right)\), nằm trong mặt phẳng \(\left( P \right):x + 2y + z - 6 = 0\) và cắt đường thẳng \(\Delta :\frac{{x - 1}}{1} = \frac{y}{1} = \frac{z}{2}\) có dạng \(\left\{ \begin{array}{l}x = 1 + at\\y = 1\\z = 3 + bt\end{array} \right.\). Tính giá trị của biểu thức \(M = 2024a - b\).
Quảng cáo
Trả lời:
Đáp án:
Gọi \(B = \Delta \cap \left( P \right) \Rightarrow \)tọa độ điểm \(B\) là nghiệm của hệ phương trình
\(\left\{ \begin{array}{l}x + 2y + z - 6 = 0\\\frac{{x - 1}}{1} = \frac{y}{1} = \frac{z}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 1\\z = 2\end{array} \right. \Rightarrow B\left( {2;1;2} \right)\)
Vì \(d \subset \left( P \right)\) và \(d\) cắt \(\Delta \Rightarrow B \in d \Rightarrow d\) đi qua \(A\left( {1;1;3} \right)\) và nhận \(\overrightarrow {AB} = \left( {1;0; - 1} \right)\) làm một VTCP.
Suy ra PTTS của \(d:\left\{ \begin{array}{l}x = 1 + t\\y = 1\\z = 3 - t\end{array} \right. \Rightarrow a = 1,b = - 1 \Rightarrow M = 2025.\)Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Cách 1:
Ta có: Trong thời gian từ \(0\) đến \(3\)giây phương trình mô tả quỹ đạo chuyển động của viên đạn là:
\(d:\left\{ \begin{array}{l}x = 1 + \frac{1}{3}t\\y = 2 + \frac{1}{3}t\\z = 4 + \frac{2}{3}t\end{array} \right.\)
với \(t = 3\) ta được điểm \[M\left( {2;\,3;\,6} \right)\].
Cách 2: Sau 3 giây viên đạn sẽ tới mục tiêu là điểm \(M\) sao cho \(\overrightarrow {AM} = 3\overrightarrow v \)
\( \Rightarrow \left\{ \begin{array}{l}{x_M} = 1 + 1 = 2\\{y_M} = 2 + 1 = 3\\{z_M} = 4 + 2 = 6\end{array} \right. \Rightarrow M\left( {2;\,3;\,6} \right)\)Câu 2
a) Điểm \[M\left( {1;2;1} \right)\] thuộc đường thẳng \[d\].
b) Đường thẳng \[d\] có một vectơ chỉ phương \[\overrightarrow u = \left( {2; - 1;1} \right)\].
c) Đường thẳng \[\Delta \] đi qua điểm \[A\] và song song với đường thẳng \[d\] có phương trình tham số là: \[\left\{ \begin{array}{l}x = 2 + 2t\\y = 3 + t\\z = 4 + t\end{array} \right.,\,t \in \mathbb{R}\].
Lời giải
|
a) Đ |
b) Đ |
c) S |
d) Đ |
* Phương án a) đúng.
* Phương án b) đúng.
* Phương án c) sai: Đường thẳng \[\Delta \] đi qua điểm \[A\] và song song với đường thẳng \[d\] nên có một vectơ chỉ phương \[\overrightarrow {{u_\Delta }} = \overrightarrow u = \left( {2; - 1;1} \right)\]. Suy ra phương trình tham số đường thẳng \[\Delta \] là: \[\left\{ \begin{array}{l}x = 2 + 2t\\y = 3 - t\\z = 4 + t\end{array} \right.,\,t \in \mathbb{R}\].
* Phương án d) đúng: Đường thẳng \[\Delta \] đi qua điểm \[A\] và song song với đường thẳng \[d\] có phương trình chính tắc là: \[\frac{x}{2} = \frac{{y - 4}}{{ - 1}} = \frac{{z - 3}}{1}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.