Trong không gian \[Oxyz\], cho điểm \(A\left( {0;\, - 3;\,2} \right)\), \(B\left( {1; - 2;3} \right)\)và đường thẳng \(\Delta \):
\(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 2}}{1}\)
Trong không gian \[Oxyz\], cho điểm \(A\left( {0;\, - 3;\,2} \right)\), \(B\left( {1; - 2;3} \right)\)và đường thẳng \(\Delta \):
\(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 2}}{1}\)d) Hình chiếu vuông góc của điểm \(O\left( {0;\,0;\,0} \right)\) lên đường thẳng \(\Delta \):
\(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 2}}{1}\) là \(H\left( {1; - 2;1} \right)\).Câu hỏi trong đề: Đề kiểm tra Ôn tập chương 5 (có lời giải) !!
Quảng cáo
Trả lời:
a) Đúng.
Phương trình đường thẳng \(AB\) nhận \(\overrightarrow {AB} \left( {1;\,1;\,1} \right)\)làm vtcp:\(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = - 3 + t}\\{z = 2 + t}\end{array}} \right.,t \in \mathbb{R}\).
b) Đúng.
Đường thẳng \(AB\)có vtpt \(\overrightarrow {AB} \left( {1;\,1;\,1} \right)\)
Đường thẳng \(\Delta \): \(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 2}}{1}\) có vtcp \(\overrightarrow u \left( {1;1;1} \right)\)
Và \(A\left( {0; - 3;2} \right) \notin \Delta \) nên \(AB//\Delta \).
c) Sai.
Đường thẳng \(\Delta \): \(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 2}}{1}\) đi qua điểm \(M\left( {2\,;\, - 1\,;\,2} \right)\) và \(\overrightarrow {{u_\Delta }} = \left( {1\,;\,1\,;\,1} \right)\).
Ta có \(\overrightarrow {AM} = \left( {2\,;\,2\,;\,0} \right) \Rightarrow \left[ {\overrightarrow {AM} \,,\,\overrightarrow {{u_\Delta }} } \right] = \left( {2\,;\, - 2\,;\,0} \right)\).
Khi đó \(d\left( {A\,,\,\Delta } \right) = \frac{{\left| {\left[ {\overrightarrow {AM} \,,\,\overrightarrow {{u_\Delta }} } \right]} \right|}}{{\left| {\overrightarrow {{u_\Delta }} } \right|}} = \frac{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {0^2}} }}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{{2\sqrt 6 }}{3}\).
d) Đúng.
Gọi \(H\) là hình chiếu của \(O\) trên đường thẳng \(\Delta \), khi đó \(H\left( {2 + t\,;\, - 1 + t\,;\,2 + t} \right)\).
Ta có \(\overrightarrow {OH} = \left( {2 + t\,;\, - 1 + t\,;\,2 + t} \right)\) và \(\overrightarrow {{u_\Delta }} = \left( {1\,;\,1\,;\,1} \right)\).
Vì \(OH \bot \Delta \) nên \(\overrightarrow {OH} .\overrightarrow {{u_\Delta }} = 0 \Leftrightarrow 2 + t - 1 + t + 2 + t = 0 \Leftrightarrow t = - 1\).
Do đó tọa độ hình chiếu vuông góc của điểm \(O\left( {0;\,0;\,0} \right)\) lên đường thẳng \(\Delta \) là \(H\left( {1; - 2;1} \right)\).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Câu 2
Lời giải
Câu 3
A. \(x - 2y + 3z + 12 = 0\).
B. \(x - 2y - 3z - 6 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\frac{{x + 1}}{{ - 1}} = \frac{{y - 2}}{3} = \frac{{z + 1}}{2}\].
B. \[\frac{{x + 1}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 2}}{1}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\).
B.\({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 25\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.\(\left( Q \right): - x - y + z - 6 = 0\).
B.\(\left( Q \right):x + y - z - 6 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.