Câu hỏi:

06/02/2026 5 Lưu

Trong không gian \[Oxyz\], cho điểm \(A\left( {0;\, - 3;\,2} \right)\), \(B\left( {1; - 2;3} \right)\)và đường thẳng \(\Delta \):

\(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 2}}{1}\)

a) Phương trình đường thẳng \(AB\):\(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y =  - 3 + t}\\{z = 2 + t}\end{array}} \right.,t \in \mathbb{R}\).
Đúng
Sai
b) Đường thẳng \(AB\)song song với đường thẳng \(\Delta \): \(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 2}}{1}\) .
Đúng
Sai
c) Khoảng cách từ điểm \(A\) đến đường thẳng \(\Delta \) là \(\frac{{3\sqrt 6 }}{2}\).
Đúng
Sai

d) Hình chiếu vuông góc của điểm \(O\left( {0;\,0;\,0} \right)\) lên đường thẳng \(\Delta \):

\(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 2}}{1}\) là \(H\left( {1; - 2;1} \right)\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

Phương trình đường thẳng \(AB\) nhận \(\overrightarrow {AB} \left( {1;\,1;\,1} \right)\)làm vtcp:\(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y =  - 3 + t}\\{z = 2 + t}\end{array}} \right.,t \in \mathbb{R}\).

b) Đúng.

Đường thẳng \(AB\)có vtpt \(\overrightarrow {AB} \left( {1;\,1;\,1} \right)\)

 Đường thẳng \(\Delta \): \(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 2}}{1}\) có vtcp \(\overrightarrow u \left( {1;1;1} \right)\)

Và \(A\left( {0; - 3;2} \right) \notin \Delta \) nên \(AB//\Delta \).

c) Sai.

                 Đường thẳng \(\Delta \): \(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 2}}{1}\)  đi qua điểm \(M\left( {2\,;\, - 1\,;\,2} \right)\) và \(\overrightarrow {{u_\Delta }}  = \left( {1\,;\,1\,;\,1} \right)\).

                 Ta có \(\overrightarrow {AM}  = \left( {2\,;\,2\,;\,0} \right) \Rightarrow \left[ {\overrightarrow {AM} \,,\,\overrightarrow {{u_\Delta }} } \right] = \left( {2\,;\, - 2\,;\,0} \right)\).

                 Khi đó \(d\left( {A\,,\,\Delta } \right) = \frac{{\left| {\left[ {\overrightarrow {AM} \,,\,\overrightarrow {{u_\Delta }} } \right]} \right|}}{{\left| {\overrightarrow {{u_\Delta }} } \right|}} = \frac{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {0^2}} }}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{{2\sqrt 6 }}{3}\).

                

d) Đúng.

Gọi \(H\) là hình chiếu của \(O\) trên đường thẳng \(\Delta \), khi đó \(H\left( {2 + t\,;\, - 1 + t\,;\,2 + t} \right)\).

Ta có \(\overrightarrow {OH}  = \left( {2 + t\,;\, - 1 + t\,;\,2 + t} \right)\) và \(\overrightarrow {{u_\Delta }}  = \left( {1\,;\,1\,;\,1} \right)\).

Vì \(OH \bot \Delta \) nên \(\overrightarrow {OH} .\overrightarrow {{u_\Delta }}  = 0 \Leftrightarrow 2 + t - 1 + t + 2 + t = 0 \Leftrightarrow t =  - 1\).

                        Do đó tọa độ hình chiếu vuông góc của điểm \(O\left( {0;\,0;\,0} \right)\) lên đường thẳng \(\Delta \) là \(H\left( {1; - 2;1} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow u  = \left( {1;\,3;\, - 2} \right)\). 
B. \(\overrightarrow u  = \left( {2;\,5;\,3} \right)\).     
C. \(\overrightarrow u  = \left( {2;\, - 5;\,3} \right)\). 
D. \(\overrightarrow u  = \left( {1;\,3;\,2} \right)\).

Lời giải

Đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y - 3}}{{ - 5}} = \frac{{z + 2}}{3}\) có một vectơ chỉ phương là \(\overrightarrow u  = \left( {2;\, - 5;\,3} \right)\) .

Câu 2

A. \(\overrightarrow {{n_2}}  = \left( {3\,;\,2\,;\,4} \right)\).         
B. \(\overrightarrow {{n_3}}  = \left( {2\,;\, - 4\,;\,1} \right)\).     
C. \(\overrightarrow {{n_1}}  = \left( {3\,;\, - 4\,;\,1} \right)\).      
D. \(\overrightarrow {{n_4}}  = \left( {3\,;\,2\,;\, - 4} \right)\).

Lời giải

Mặt phẳng \(\left( \alpha  \right):3x + 2y - 4z + 1 = 0\) có vectơ pháp tuyến \(\overrightarrow n  = \left( {3\,;\,2\,;\, - 4} \right)\).

Câu 3

A. \(x - 2y + 3z + 12 = 0\).                                                                        

B. \(x - 2y - 3z - 6 = 0\).

C. \(x - 2y + 3z - 12 = 0\).                  
D. \(x - 2y - 3z + 6 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\frac{{x + 1}}{{ - 1}} = \frac{{y - 2}}{3} = \frac{{z + 1}}{2}\].                                        

B. \[\frac{{x + 1}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 2}}{1}\].

C. \[\frac{x}{{ - 1}} = \frac{{y - 1}}{3} = \frac{{z - 3}}{2}\].                  
D. \[\frac{x}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 3}}{1}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\).            

B.\({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 25\).

C.\({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 5\).            
D.\({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.\(\left( Q \right): - x - y + z - 6 = 0\).              

B.\(\left( Q \right):x + y - z - 6 = 0\).

C.\(\left( Q \right):x + y + z - 6 = 0\).                                                        
D.\(\left( Q \right):x - y - z + 6 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP