Cho \(A\left( {4\,;\,0\,;\,0} \right)\), \(B\left( {0\,;\,4\,;\,0\,} \right)\), \(C\left( {0\,;\,0\,;\,4} \right)\). Trong các khẳng định sau, khẳng định nào đúng hay sai?
b)Phương trình mặt cầu đi qua \(O\,,\,A\,,\,B\,,\,C\)là
\({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 2} \right)^2} = 12\).Câu hỏi trong đề: Đề kiểm tra Ôn tập chương 5 (có lời giải) !!
Quảng cáo
Trả lời:
a) Sai:
Phương trình của \(\left( {ABC} \right)\) có dạng \(\frac{x}{4} + \frac{y}{4} + \frac{z}{4} = 1 \Leftrightarrow x + y + z = 4\).
b) Đúng:
Phương trình mặt cầu đi qua \(O\,,\,A\,,\,B\,,\,C\) có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\)
\( \Leftrightarrow 2ax + 2by + 2cz - d = {x^2} + {y^2} + {z^2}\) \(\left( 1 \right)\).
Thay tọa độ các điểm \(O\,,\,A\,,\,B\,,\,C\) vào \(\left( 1 \right)\), ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{ - d = 0}\\{8a - d = 16}\\{8b - d = 16}\\{8c - d = 16}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = 2}\\{c = 2}\\{d = 0}\end{array}} \right.\).
Khi đó mặt cầu đi qua \(O\,,\,A\,,\,B\,,\,C\) có tâm \(I\left( {2\,;\,2\,;\,2} \right)\) và bán kính \(R = \sqrt {{2^2} + {2^2} + {2^2} - 0} = 2\sqrt 3 \).
Vậy phương trình mặt cầu đi qua \(O\,,\,A\,,\,B\,,\,C\)là \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 2} \right)^2} = 12\).
c) Sai:
Mặt phẳng \(\left( {ABC} \right)\) là \(x + y + z - 4 = 0\).
Khi đó \(d\left( {0\,,\,\left( {ABC} \right)} \right) = \frac{{\left| {0 + 0 + 0 - 4} \right|}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{4}{{\sqrt 3 }}\).
d) Đúng:
Trong tam giác \(OAC\) hạ \(OH \bot AC\).
Theo bài ra \(\left( {OAC} \right) \bot OB \Rightarrow OH \bot BC\).
Vì \(\left\{ {\begin{array}{*{20}{c}}{OH \bot AC}\\{OH \bot OB}\end{array}} \right.\) nên \(OH\) là đường thẳng vuông góc chung của \(AC\) và \(OB\).
Lại có \(\overrightarrow {AC} = \left( { - 4\,;\,0\,;\,4} \right)\) và \(\overrightarrow {OB} = \left( {0\,;\,4\,;\,0} \right)\)
Khi đó \(\overrightarrow {OH} = \left[ {\overrightarrow {AC} \,,\,\overrightarrow {OB} } \right] = \left( {16\,;\,0\,;\,16} \right) = 16\left( {1\,;\,0\,;\,1} \right)\). Suy ra \(\overrightarrow {{u_{OH}}} = \left( {1\,;\,0\,;\,1} \right)\).
Do đó phương trình đường thẳng \(OH\) là \(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 0}\\{z = t}\end{array}} \right.\).
Nhận thấy đường thẳng \(\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 0}\\{z = 2t}\end{array}} \right.\) có \(\overrightarrow u = \left( {2\,;\,0\,;\,2} \right) = 2\overrightarrow {{u_{OH}}} \) và đều đi qua điểm \(O\left( {0\,;\,0\,;\,0} \right)\) nên đường thẳng \(\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 0}\\{z = 2t}\end{array}} \right.\) và \(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 0}\\{z = t}\end{array}} \right.\) trùng nhau.
Vậy đường thẳng vuông góc chung của \(AC\) và \(OB\) có phương trình là \(\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 0}\\{z = 2t}\end{array}} \right.\).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(x - 2y + 3z + 12 = 0\).
B. \(x - 2y - 3z - 6 = 0\).
Lời giải
Câu 2
Lời giải
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\frac{{x + 1}}{{ - 1}} = \frac{{y - 2}}{3} = \frac{{z + 1}}{2}\].
B. \[\frac{{x + 1}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 2}}{1}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\).
B.\({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 25\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.\(\left( Q \right): - x - y + z - 6 = 0\).
B.\(\left( Q \right):x + y - z - 6 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.