Đề kiểm tra Ôn tập chương 5 (có lời giải) - Đề 2
4.6 0 lượt thi 22 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề kiểm tra Phương pháp tọa độ trong không gian (có lời giải) - Đề 3
Đề kiểm tra Phương pháp tọa độ trong không gian (có lời giải) - Đề 2
Đề kiểm tra Phương pháp tọa độ trong không gian (có lời giải) - Đề 1
Đề kiểm tra Ứng dụng hình học của tích phân (có lời giải) - Đề 3
Đề kiểm tra Ứng dụng hình học của tích phân (có lời giải) - Đề 2
Danh sách câu hỏi:
Câu 1
Lời giải
Câu 2
A. \(x - 2y + 3z + 12 = 0\).
B. \(x - 2y - 3z - 6 = 0\).
Lời giải
Câu 3
Lời giải
Câu 4
A. \[\frac{{x + 1}}{{ - 1}} = \frac{{y - 2}}{3} = \frac{{z + 1}}{2}\].
B. \[\frac{{x + 1}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 2}}{1}\].
Lời giải
Ta có: \(\overrightarrow {MN} = \left( { - 1;\;3;\;2} \right)\).
Đường thẳng \(MN\) qua \(N\) nhận \(\overrightarrow {MN} = \left( { - 1;\;3;\;2} \right)\) làm vectơ chỉ phương có phương trình là
\[\frac{x}{{ - 1}} = \frac{{y - 1}}{3} = \frac{{z - 3}}{2}\].Câu 5
A.\({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\).
B.\({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 25\).
Lời giải
Bán kính mặt cầu \(R = IA = 5.\)
Phương trình mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25.\)Câu 6
A.\(\left( Q \right): - x - y + z - 6 = 0\).
B.\(\left( Q \right):x + y - z - 6 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
A. \(\frac{{x - 1}}{1} = \frac{{y - 4}}{{ - 2}} = \frac{{z + 7}}{{ - 2}}\).
B. \(\frac{{x - 1}}{1} = \frac{{y - 4}}{2} = \frac{{z + 7}}{{ - 2}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
d) Hình chiếu vuông góc của điểm \(O\left( {0;\,0;\,0} \right)\) lên đường thẳng \(\Delta \):
\(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 2}}{1}\) là \(H\left( {1; - 2;1} \right)\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
b) Điểm \(O\left( {0\,;\,0\,;\,0} \right)\) nằm trong mặt cầu \(\left( S \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 16
b)Phương trình mặt cầu đi qua \(O\,,\,A\,,\,B\,,\,C\)là
\({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 2} \right)^2} = 12\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.