Trong không gian \[Oxyz\], cho điểm \(A\left( {0;\, - 3;\,2} \right)\) và mặt phẳng \(\left( P \right):\,2x - y + 3z + 5 = 0\).
Khẳng định nào sau là đúng hay sai?
Câu hỏi trong đề: Đề kiểm tra Ôn tập chương 5 (có lời giải) !!
Quảng cáo
Trả lời:
a) Đúng.
Gọi \(\left( Q \right)\)là mặt phẳng cần tìm.
Theo bài \(\left( Q \right)//\left( P \right) \Rightarrow \left( Q \right):\,2x - y + 3z + m = 0\,\,\left( {m \ne 5} \right)\)
Mà \(\left( Q \right)\) qua \(A \Leftrightarrow 2.0 - \left( { - 3} \right) + 3.2 + m = 0 \Leftrightarrow m = - 9\,\left( {{\rm{tm}}} \right)\).
Vậy mp\(\left( Q \right):2x - y + 3z - 9 = 0\).
b) Sai.
\(\left( P \right):\,2x - y + 3z + 5 = 0\) có Vtpt \(\overrightarrow {{n_1}} \left( {2;\, - 1;\,3} \right)\).
\(\left( R \right):\,x + 2y - 2z - 5 = 0\)có Vtpt \(\overrightarrow {{n_2}} \left( {1;\,2;\, - 2} \right)\).
Ta có: \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = - 6 \ne 0\)\( \Rightarrow \)\(\left( P \right)\) không vuông góc với \(\left( R \right)\).
c) Đúng.
Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( P \right):\,2x - y + 3z + 5 = 0\):
\(d\left( {A,\left( P \right)} \right) = \frac{{\left| {2.0 + 3 + 3.2 + 5} \right|}}{{\sqrt {{2^2} + {1^2} + {3^2}} }} = \sqrt {14} \).
d) Sai.
Phương trình đường thẳng \(\Delta \) đi qua \(A\) và vuông góc với mặt phẳng \(\left( P \right)\), có vtcp là \(\overrightarrow u \left( {2; - 1;3} \right)\)
\(\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = - 3 - t}\\{z = 2 + 3t}\end{array}} \right.\,\,\,\,(t \in \mathbb{R})\).
Gọi \(H\) là hình chiếu của \(A\) lên mặt phẳng \(\left( P \right)\)\( \Rightarrow \)\(\left\{ H \right\} = \Delta \cap \left( P \right)\) có tọa độ là nghiệm của hệ phương trình:
\(\left\{ {\begin{array}{*{20}{c}}{x = 2t\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{y = - 3 - t\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{z = 2 + 3t\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{2x - y + 3z + 5 = 0}\end{array}} \right.\, \Rightarrow 4t + 3 + t + 3\left( {2 + 3t} \right) + 5 = 0 \Leftrightarrow t = - 1\)
Vậy \(H\left( { - 2; - 2; - 1} \right)\).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Câu 2
Lời giải
Câu 3
A. \(x - 2y + 3z + 12 = 0\).
B. \(x - 2y - 3z - 6 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\frac{{x + 1}}{{ - 1}} = \frac{{y - 2}}{3} = \frac{{z + 1}}{2}\].
B. \[\frac{{x + 1}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 2}}{1}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\).
B.\({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 25\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.\(\left( Q \right): - x - y + z - 6 = 0\).
B.\(\left( Q \right):x + y - z - 6 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.