Câu hỏi:

06/02/2026 6 Lưu

Trong không gian \[Oxyz\], cho điểm \(A\left( {0;\, - 3;\,2} \right)\) và mặt phẳng \(\left( P \right):\,2x - y + 3z + 5 = 0\).
Khẳng định nào sau là đúng hay sai?

a) Phương trình mặt phẳng đi qua điểm \(A\) và song song với mặt phẳng \(\left( P \right):\,2x - y + 3z + 5 = 0\) là \(2x - y + 3z - 9 = 0\).
Đúng
Sai
b) Mặt phẳng \(\left( P \right):\,2x - y + 3z + 5 = 0\) vuông góc với mặt phẳng \(\left( R \right):\,x + 2y - 2z - 5 = 0\).
Đúng
Sai
c) Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( P \right):\,2x - y + 3z + 5 = 0\) là \(\sqrt {14} \).
Đúng
Sai
d) Hình chiếu vuông góc của điểm \(A\left( {0;\, - 3;\,2} \right)\) lên mặt phẳng \(\left( P \right):\,2x - y + 3z + 5 = 0\) là\(H\left( {\frac{{ - 26}}{{11}};\frac{{ - 48}}{{11}};\frac{{ - 17}}{{11}}} \right)\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

Gọi \(\left( Q \right)\)là mặt phẳng cần tìm.

Theo bài \(\left( Q \right)//\left( P \right) \Rightarrow \left( Q \right):\,2x - y + 3z + m = 0\,\,\left( {m \ne 5} \right)\)

Mà \(\left( Q \right)\) qua \(A \Leftrightarrow 2.0 - \left( { - 3} \right) + 3.2 + m = 0 \Leftrightarrow m =  - 9\,\left( {{\rm{tm}}} \right)\).

Vậy mp\(\left( Q \right):2x - y + 3z - 9 = 0\).

b) Sai.

\(\left( P \right):\,2x - y + 3z + 5 = 0\) có Vtpt  \(\overrightarrow {{n_1}} \left( {2;\, - 1;\,3} \right)\).

\(\left( R \right):\,x + 2y - 2z - 5 = 0\)có Vtpt  \(\overrightarrow {{n_2}} \left( {1;\,2;\, - 2} \right)\).

Ta có: \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  =  - 6 \ne 0\)\( \Rightarrow \)\(\left( P \right)\) không vuông góc với \(\left( R \right)\).

c) Đúng.

Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( P \right):\,2x - y + 3z + 5 = 0\):

\(d\left( {A,\left( P \right)} \right) = \frac{{\left| {2.0 + 3 + 3.2 + 5} \right|}}{{\sqrt {{2^2} + {1^2} + {3^2}} }} = \sqrt {14} \).

d) Sai.

Phương trình đường thẳng \(\Delta \) đi qua \(A\) và vuông góc với mặt phẳng \(\left( P \right)\), có vtcp là \(\overrightarrow u \left( {2; - 1;3} \right)\)

\(\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y =  - 3 - t}\\{z = 2 + 3t}\end{array}} \right.\,\,\,\,(t \in \mathbb{R})\).

Gọi \(H\) là hình chiếu của \(A\) lên mặt phẳng \(\left( P \right)\)\( \Rightarrow \)\(\left\{ H \right\} = \Delta  \cap \left( P \right)\) có tọa độ là nghiệm của hệ phương trình:

\(\left\{ {\begin{array}{*{20}{c}}{x = 2t\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{y =  - 3 - t\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{z = 2 + 3t\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{2x - y + 3z + 5 = 0}\end{array}} \right.\, \Rightarrow 4t + 3 + t + 3\left( {2 + 3t} \right) + 5 = 0 \Leftrightarrow t =  - 1\)

Vậy \(H\left( { - 2; - 2; - 1} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow u  = \left( {1;\,3;\, - 2} \right)\). 
B. \(\overrightarrow u  = \left( {2;\,5;\,3} \right)\).     
C. \(\overrightarrow u  = \left( {2;\, - 5;\,3} \right)\). 
D. \(\overrightarrow u  = \left( {1;\,3;\,2} \right)\).

Lời giải

Đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y - 3}}{{ - 5}} = \frac{{z + 2}}{3}\) có một vectơ chỉ phương là \(\overrightarrow u  = \left( {2;\, - 5;\,3} \right)\) .

Câu 2

A. \(\overrightarrow {{n_2}}  = \left( {3\,;\,2\,;\,4} \right)\).         
B. \(\overrightarrow {{n_3}}  = \left( {2\,;\, - 4\,;\,1} \right)\).     
C. \(\overrightarrow {{n_1}}  = \left( {3\,;\, - 4\,;\,1} \right)\).      
D. \(\overrightarrow {{n_4}}  = \left( {3\,;\,2\,;\, - 4} \right)\).

Lời giải

Mặt phẳng \(\left( \alpha  \right):3x + 2y - 4z + 1 = 0\) có vectơ pháp tuyến \(\overrightarrow n  = \left( {3\,;\,2\,;\, - 4} \right)\).

Câu 3

A. \(x - 2y + 3z + 12 = 0\).                                                                        

B. \(x - 2y - 3z - 6 = 0\).

C. \(x - 2y + 3z - 12 = 0\).                  
D. \(x - 2y - 3z + 6 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\frac{{x + 1}}{{ - 1}} = \frac{{y - 2}}{3} = \frac{{z + 1}}{2}\].                                        

B. \[\frac{{x + 1}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 2}}{1}\].

C. \[\frac{x}{{ - 1}} = \frac{{y - 1}}{3} = \frac{{z - 3}}{2}\].                  
D. \[\frac{x}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 3}}{1}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\).            

B.\({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 25\).

C.\({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 5\).            
D.\({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.\(\left( Q \right): - x - y + z - 6 = 0\).              

B.\(\left( Q \right):x + y - z - 6 = 0\).

C.\(\left( Q \right):x + y + z - 6 = 0\).                                                        
D.\(\left( Q \right):x - y - z + 6 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP