Câu hỏi:

06/02/2026 2 Lưu

Cho \(A\left( {4\,;\,0\,;\,0} \right)\), \(B\left( {0\,;\,4\,;\,0\,} \right)\), \(C\left( {0\,;\,0\,;\,4} \right)\). Trong các khẳng định sau, khẳng định nào đúng hay sai?

a).Phương trình mặt phẳng \(\left( {ABC} \right)\) là \(x + y + z = 1\).

Đúng
Sai

b).Phương trình mặt cầu đi qua \(O\,,\,A\,,\,B\,,\,C\)là

 \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 2} \right)^2} = 12\).

Đúng
Sai

c).Khoảng cách từ \(O\) đến mặt phẳng \(\left( {ABC} \right)\) là \(\frac{2}{{\sqrt 3 }}\).

Đúng
Sai
d).Đường thẳng vuông góc chung của \(AC\) và \(OB\) có phương trình là \(\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 0}\\{z = 2t}\end{array}} \right.\)...
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai:

Phương trình của \(\left( {ABC} \right)\) có dạng \(\frac{x}{4} + \frac{y}{4} + \frac{z}{4} = 1 \Leftrightarrow x + y + z = 4\).

b) Đúng:

Phương trình mặt cầu đi qua \(O\,,\,A\,,\,B\,,\,C\) có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\)

\( \Leftrightarrow 2ax + 2by + 2cz - d = {x^2} + {y^2} + {z^2}\) \(\left( 1 \right)\).

Thay tọa độ các điểm \(O\,,\,A\,,\,B\,,\,C\) vào \(\left( 1 \right)\), ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{ - d = 0}\\{8a - d = 16}\\{8b - d = 16}\\{8c - d = 16}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = 2}\\{c = 2}\\{d = 0}\end{array}} \right.\).

Khi đó mặt cầu đi qua \(O\,,\,A\,,\,B\,,\,C\) có tâm \(I\left( {2\,;\,2\,;\,2} \right)\) và bán kính \(R = \sqrt {{2^2} + {2^2} + {2^2} - 0}  = 2\sqrt 3 \).

Vậy phương trình mặt cầu đi qua \(O\,,\,A\,,\,B\,,\,C\)là \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 2} \right)^2} = 12\).

c) Sai:

Mặt phẳng \(\left( {ABC} \right)\) là \(x + y + z - 4 = 0\).

Khi đó \(d\left( {0\,,\,\left( {ABC} \right)} \right) = \frac{{\left| {0 + 0 + 0 - 4} \right|}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{4}{{\sqrt 3 }}\).

d) Đúng:

Trong tam giác \(OAC\) hạ \(OH \bot AC\).

Theo bài ra \(\left( {OAC} \right) \bot OB \Rightarrow OH \bot BC\).

Vì \(\left\{ {\begin{array}{*{20}{c}}{OH \bot AC}\\{OH \bot OB}\end{array}} \right.\) nên \(OH\) là đường thẳng vuông góc chung của \(AC\) và \(OB\).

Lại có \(\overrightarrow {AC}  = \left( { - 4\,;\,0\,;\,4} \right)\) và \(\overrightarrow {OB}  = \left( {0\,;\,4\,;\,0} \right)\)

Khi đó \(\overrightarrow {OH}  = \left[ {\overrightarrow {AC} \,,\,\overrightarrow {OB} } \right] = \left( {16\,;\,0\,;\,16} \right) = 16\left( {1\,;\,0\,;\,1} \right)\). Suy ra \(\overrightarrow {{u_{OH}}}  = \left( {1\,;\,0\,;\,1} \right)\).

Do đó phương trình đường thẳng \(OH\) là \(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 0}\\{z = t}\end{array}} \right.\).

Nhận thấy  đường thẳng \(\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 0}\\{z = 2t}\end{array}} \right.\) có \(\overrightarrow u  = \left( {2\,;\,0\,;\,2} \right) = 2\overrightarrow {{u_{OH}}} \) và đều đi qua điểm \(O\left( {0\,;\,0\,;\,0} \right)\) nên đường thẳng \(\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 0}\\{z = 2t}\end{array}} \right.\) và \(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 0}\\{z = t}\end{array}} \right.\) trùng nhau.

Vậy đường thẳng vuông góc chung của \(AC\) và \(OB\) có phương trình là \(\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 0}\\{z = 2t}\end{array}} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(Q\left( {1; - 2;2} \right)\).         
B. \(N\left( {1; - 1; - 1} \right)\).      
C. \(P\left( {2; - 1; - 1} \right)\).  
D. \(M\left( {1;1; - 1} \right)\).

Lời giải

Thay toạ độ các điểm \(Q,N,P,M\) vào phương trình mặt phẳng \(\left( \alpha  \right)\), thấy toạ độ điểm \(N\)thoả mãn.

Lời giải

Đường thẳng \(\,{d_1}:\,\,\frac{{x + 1}}{1} = \frac{{y - 2}}{1} = \frac{{z + 2}}{{ - 1}}\)có véc tơ chỉ phương \(\overrightarrow u  = \left( {1;1; - 1} \right)\),

Đường thẳng \(\,{d_2}:\,\,\frac{{x - 1}}{1} = \frac{{y + 2}}{{ - 1}} = \frac{{z + 1}}{1}\)có véc tơ chỉ phương \(\overrightarrow u ' = \left( {1; - 1;1} \right)\).

Gọi \(\varphi \) là góc giữa đường thẳng \({d_1}\) và đường thẳng \({d_2}\), khi đó

\(\cos \varphi  = \frac{{\left| {\overrightarrow u .\overrightarrow {u'} } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow {u'} } \right|}} = \frac{{\left| {1.1 + 1.\left( { - 1} \right) + \left( { - 1} \right).1} \right|}}{{\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{1}{3}.\)

Câu 4

A. \(\overrightarrow {{n_2}}  = \left( {2; - 1;2} \right)\).   
B. \(\overrightarrow {{n_4}}  = \left( {3;2;1} \right)\).     
C. \(\overrightarrow {{n_3}}  = \left( {3;2;2} \right)\).          
D. \(\overrightarrow {{n_1}}  = \left( {3;2; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(5x + 2y - 3z - 17 = 0\).                                                                       

B. \(2x + 2y + z - 11 = 0\).

C. \(5x + 2y - 3z - 11 = 0\).                
D. \(2x + 2y + z - 17 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( { - 1;1;3} \right)\). 
B. \(\left( {2; - 4;1} \right)\).  
C. \(\left( {1;1;3} \right)\).            
D. \(\left( {2;4;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left\{ \begin{array}{l}x = 1 + t\\y =  - 2 + 2t\\z =  - 1 + 3t\end{array} \right.,t \in \mathbb{R}\). 
B. \(\left\{ \begin{array}{l}x = 1 + t\\y = 2 - 2t\\z = 3 - t\end{array} \right.,t \in \mathbb{R}\).      
C. \(\left\{ \begin{array}{l}x =  - 1 + t\\y =  - 2 - 2t\\z =  - 3 - t\end{array} \right.,t \in \mathbb{R}\).    
D. \(\left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + t\end{array} \right.,t \in \mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP