Câu hỏi:

06/02/2026 4 Lưu

Trong không gian \[Oxyz\], cho mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\], mặt phẳng \[\left( P \right):2x + 2y - z + 24 = 0\]. Điểm \[M\left( {a;b;c} \right)\] thuộc mặt cầu \[\left( S \right)\] sao cho khoảng cách từ \[M\] đến \[\left( P \right)\] nhỏ nhất. Khi đó \[a + b + c\] có giá trị bằng

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

3
Trong không gian \[Oxyz\], cho mặt cầu (S): (x -1 ) ^ 2+ ( y -2 ) ^ 2 + ( z-3 )^ 2 (ảnh 1)

\[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\] có \[\left\{ \begin{array}{l}I\left( {1;2;3} \right)\\R = 3\end{array} \right.\].

Ta có \[d\left( {I,\left( P \right)} \right) = 9 > R\] nên mặt phẳng \[\left( P \right)\] và \[\left( S \right)\] không có điểm chung.

Gọi \[d\] là đường thẳng đi qua tâm \[I\] và vuông góc với mặt phẳng \[\left( P \right)\].

\[d:\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 + 2t\\z = 3 - t\end{array} \right.\,\,\,\,\,\left( {t \in \mathbb{R}} \right)\].

Điểm \[M\] cần tìm là giao điểm của \[d\] và \[\left( S \right)\].

Tọa độ của \[M\] là nghiệm của hệ phương trình

\[\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 + 2t\\z = 3 - t\\{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1 + 2t\\y = 2 + 2t\\z = 3 - t\\{t^2} = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}t = 1\\x = 3\\y = 4\\z = 2\end{array} \right.\\\left\{ \begin{array}{l}t =  - 1\\x =  - 1\\y = 0\\z = 4\end{array} \right.\end{array} \right.\]\[ \Rightarrow \left[ \begin{array}{l}{M_1}\left( {3;4;2} \right)\\{M_2}\left( { - 1;0;4} \right)\end{array} \right.\]

\[d\left( {{M_1},\left( P \right)} \right) > d\left( {{M_2},\left( P \right)} \right)\].

Vậy điểm \[{M_2}\left( { - 1;0;4} \right)\] là điểm cần tìm.

Suy ra \[a + b + c = 3\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(Q\left( {1; - 2;2} \right)\).         
B. \(N\left( {1; - 1; - 1} \right)\).      
C. \(P\left( {2; - 1; - 1} \right)\).  
D. \(M\left( {1;1; - 1} \right)\).

Lời giải

Thay toạ độ các điểm \(Q,N,P,M\) vào phương trình mặt phẳng \(\left( \alpha  \right)\), thấy toạ độ điểm \(N\)thoả mãn.

Lời giải

Phương trình tham số của đường cáp treo là: \[d:\left\{ \begin{array}{l}x = 10 + 2t\\y = 2t\\z = 3 + t\end{array} \right.\,\,\,\,\,\left( {t \in \mathbb{R}} \right)\].

\[{x_B} = 20 \Rightarrow B\left( {20;10;8} \right)\], \[{y_C} = 120 \Rightarrow C\left( {130;120;63} \right)\].

\[BC = \sqrt {{{110}^2} + {{110}^2} + {{55}^2}}  = 165\left( m \right)\].

Vậy vận tốc của cabin đi là \[v = \frac{{165}}{{55}} = 3\left( {m/s} \right)\].

Câu 3

A. \(\overrightarrow {{n_2}}  = \left( {2; - 1;2} \right)\).   
B. \(\overrightarrow {{n_4}}  = \left( {3;2;1} \right)\).     
C. \(\overrightarrow {{n_3}}  = \left( {3;2;2} \right)\).          
D. \(\overrightarrow {{n_1}}  = \left( {3;2; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(5x + 2y - 3z - 17 = 0\).                                                                       

B. \(2x + 2y + z - 11 = 0\).

C. \(5x + 2y - 3z - 11 = 0\).                
D. \(2x + 2y + z - 17 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( { - 1;1;3} \right)\). 
B. \(\left( {2; - 4;1} \right)\).  
C. \(\left( {1;1;3} \right)\).            
D. \(\left( {2;4;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left\{ \begin{array}{l}x = 1 + t\\y =  - 2 + 2t\\z =  - 1 + 3t\end{array} \right.,t \in \mathbb{R}\). 
B. \(\left\{ \begin{array}{l}x = 1 + t\\y = 2 - 2t\\z = 3 - t\end{array} \right.,t \in \mathbb{R}\).      
C. \(\left\{ \begin{array}{l}x =  - 1 + t\\y =  - 2 - 2t\\z =  - 3 - t\end{array} \right.,t \in \mathbb{R}\).    
D. \(\left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + t\end{array} \right.,t \in \mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left\{ \begin{array}{l}x = 3 - 1t\\y =  - 2 + 2t\\z = 1 - 2t\end{array} \right.\,,t \in \mathbb{R}\). 
B. \(\left\{ \begin{array}{l}x = 1 + 3t\\y =  - 2 - 2t\\z = 2 - t\end{array} \right.\,,t \in \mathbb{R}\).    
C. \(\left\{ \begin{array}{l}x =  - 3 - 1t\\y = 2 + 2t\\z =  - 1 - 2t\end{array} \right.\,,t \in \mathbb{R}\).   
D. \(\left\{ \begin{array}{l}x = 3 - 1t\\y = 2 - 2t\\z = 1 - 2t\end{array} \right.\,,t \in \mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP