Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.
Câu hỏi trong đề: Đề kiểm tra Xác suất có điều kiện (có lời giải) !!
Quảng cáo
Trả lời:
Chọn C
Gọi \[A\] là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”
Gọi \[B\] là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.
Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì \[P\left( {B|A} \right) = \frac{1}{6}\]Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D
Giới tính cả 2 đứa trẻ là ngẫu nhiên và không liên quan đến nhau.
Do gia đình có 2 đứa trẻ nên sẽ có thể xảy ra 4 khả năng:
(trai, trai), (gái, gái), (gái, trai), (trai, gái).
Gọi A là biến cố “Cả hai đứa trẻ đều là con gái”
Gọi B là biến cố “Có ít nhất một đứa trẻ là con gái”
Ta có \[P\left( A \right) = \frac{1}{4};P\left( B \right) = \frac{3}{4}\]
Do nếu xảy ra A thì đương nhiên sẽ xảy ra B nên ta có:
\[P\left( {A \cap B} \right) = P\left( A \right) = \frac{1}{4}\]
Suy ra, xác suất để cả hai đứa trẻ đều là con gái khi biết ít nhất có một đứa trẻ là gái là
\[P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{4}}}{{\frac{3}{4}}} = \frac{1}{3}\]Câu 2
a) Với \(\Omega \) là không gian mẫu. \(n\left( \Omega \right) = 196\).
b) \(P\left( B \right) = \frac{8}{{13}}\)
c) \(P\left( {AB} \right) = \frac{{24}}{{91}}\)
Lời giải
Nam có 14 cách lấy ngẫu nhiên một viên bi trong hộp
Hùng có 13 cách lấy một viên bi còn lại trong hộp (vì Nam lấy bi và không trả lại)
Do đó \(n\left( \Omega \right) = 14.13 = 182\).
b) Sai
Nam có 8 cách lấy một viên bi màu xanh, Hùng có 13 cách lấy một viên bi còn lại trong hộp. Dó đó \(n\left( B \right) = 8.13 = 104 \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{4}{7}\).
c) Đúng
Nam có 8 cách lấy một viên bi màu xanh, Hùng có 6 cách lấy một viên bi màu đỏ. Do đó \(n\left( {AB} \right) = 8.6 = 48 \Rightarrow P\left( {AB} \right) = \frac{{n\left( {AB} \right)}}{{n\left( \Omega \right)}} = \frac{{24}}{{91}}\).
d) Đúng
Ta có: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{6}{{13}}\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) \(P\left( {AB} \right) = \frac{1}{6}\)
b) \(P\left( B \right) = \frac{{11}}{{36}}\)
c) \(P\left( {A|B} \right) = \frac{5}{6}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.