Câu hỏi:

06/02/2026 4 Lưu

Có 40 phiếu thi Toán 12, mỗi phiếu chỉ có một câu hỏi, trong đó có 13 câu hỏi lý thuyết (gồm 5 câu hỏi khó và 8 câu hỏi dễ) và 27 câu hỏi bài tập (gồm 12 câu hỏi khó và 15 câu hỏi dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết khó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

\[\frac{5}{{17}}\].

Gọi A là biến cố: “rút ra được câu hỏi lý thuyết”

Gọi B là biến cố: “rút ra được câu khó”

Nếu biết B đã xảy ra (nghĩa là câu hỏi rút ra là một câu trong số 17 câu khó) thì xác suất để câu hỏi đó là lý thuyết (nghĩa là câu hỏi đó là một câu trong số 5 câu hỏi lý thuyết khó ) chính là xác suất A có điều kiện B đã xảy ra.  Ta đi tính \[P\left( {A|B} \right)\]

Ta có:

\[P\left( A \right) = \frac{{13}}{{40}}\]

\[P\left( B \right) = \frac{{17}}{{40}}\]

\[P\left( {A \cap B} \right) = \frac{5}{{40}}\]

Vậy \[P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{5}{{40}}}}{{\frac{{17}}{{40}}}} = \frac{5}{{17}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Giới tính cả 2 đứa trẻ là ngẫu nhiên và không liên quan đến nhau.

Do gia đình có 2 đứa trẻ nên sẽ có thể xảy ra 4 khả năng:

(trai, trai), (gái, gái), (gái, trai), (trai, gái).

Gọi A là biến cố “Cả hai đứa trẻ đều là con gái”

Gọi B là biến cố “Có ít nhất một đứa trẻ là con gái”

Ta có \[P\left( A \right) = \frac{1}{4};P\left( B \right) = \frac{3}{4}\]

Do nếu xảy ra A thì đương nhiên sẽ xảy ra B nên ta có:

\[P\left( {A \cap B} \right) = P\left( A \right) = \frac{1}{4}\]

Suy ra, xác suất để cả hai đứa trẻ đều là con gái khi biết ít nhất có một đứa trẻ là gái là

\[P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{4}}}{{\frac{3}{4}}} = \frac{1}{3}\]

Lời giải

a)     Sai

Nam có 14 cách lấy ngẫu nhiên một viên bi trong hộp

Hùng có 13 cách lấy một viên bi còn lại trong hộp (vì Nam lấy bi và không trả lại)

Do đó \(n\left( \Omega  \right) = 14.13 = 182\).

b)     Sai

Nam có 8 cách lấy một viên bi màu xanh, Hùng có 13 cách lấy một viên bi còn lại trong hộp. Dó đó \(n\left( B \right) = 8.13 = 104 \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{4}{7}\).

c)     Đúng

Nam có 8 cách lấy một viên bi màu xanh, Hùng có 6 cách lấy một viên bi màu đỏ. Do đó \(n\left( {AB} \right) = 8.6 = 48 \Rightarrow P\left( {AB} \right) = \frac{{n\left( {AB} \right)}}{{n\left( \Omega  \right)}} = \frac{{24}}{{91}}\).

d)     Đúng

Ta có: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{6}{{13}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(P\left( {AB} \right) = \frac{1}{6}\)

Đúng
Sai

b) \(P\left( B \right) = \frac{{11}}{{36}}\)

Đúng
Sai

c) \(P\left( {A|B} \right) = \frac{5}{6}\)

Đúng
Sai
d) \(P\left( {\overline A |B} \right) = \frac{4}{{11}}\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP