Xét hàm số \(f\left( x \right) = \sqrt[3]{{\cos 2x}}\). Các mệnh đề sau đúng hay sai?
Xét hàm số \(f\left( x \right) = \sqrt[3]{{\cos 2x}}\). Các mệnh đề sau đúng hay sai?
a) \(f\left( {\frac{\pi }{2}} \right) = - 1\).
b) \(f'\left( x \right) = \frac{{ - 2\sin 2x}}{{3.\sqrt[3]{{{{\cos }^2}2x}}}}\).
c) \(f'\left( {\frac{\pi }{2}} \right) = 1\).
Câu hỏi trong đề: Đề kiểm tra Các quy tắc tính đạo hàm (có lời giải) !!
Quảng cáo
Trả lời:
|
a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
\(f\left( {\frac{\pi }{2}} \right) = \sqrt[3]{{\cos 2.\frac{\pi }{2}}} = - 1\).
\[y = \sqrt[3]{{\cos 2x}} \Rightarrow {y^3} = \cos 2x \Rightarrow y'3{y^2} = - 2\sin 2x \Rightarrow y' = \frac{{ - 2\sin 2x}}{{3{{\left( {\sqrt[3]{{\cos 2x}}} \right)}^2}}}\].
\(f'\left( {\frac{\pi }{2}} \right) = 0\) .
\(3.{\left( {\sqrt[3]{{\cos 2x}}} \right)^2}.\frac{{ - 2\sin 2x}}{{3{{\left( {\sqrt[3]{{\cos 2x}}} \right)}^2}}} + 2\sin 2x = - 2\sin 2x + 2\sin 2x = 0\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \({y^\prime } = {\left( {x \cdot {2^{2x}}} \right)^\prime } = {\left( {x \cdot {4^x}} \right)^\prime } = {x^\prime } \cdot {4^x} + {\left( {{4^x}} \right)^\prime } \cdot x = {4^x} + {4^x} \cdot \ln 4 \cdot x\);
\({y^{\prime \prime }} = {\left( {{4^x} + {4^x} \cdot \ln 4 \cdot x} \right)^\prime } = {\left( {{4^x}} \right)^\prime } + \ln 4 \cdot {\left( {x \cdot {4^x}} \right)^\prime }\) (\({\left( {x \cdot {4^x}} \right)^\prime }\)làm giống bước trên)
\( = {4^x}\ln 4 + \ln 4 \cdot \left( {{4^x} + {4^x} \cdot \ln 4 \cdot x} \right) = 2 \cdot {4^x}\ln 4 + {\ln ^2}4 \cdot {4^x} \cdot x = {4^x} \cdot \ln 4(2 + x\ln 4).\)
Lời giải
Theo giả thiết, ta có: \({x_0} = 2 \Rightarrow {y_0} = 3\), gọi điểm \(M(2;3)\) là toạ độ tiếp điểm.
Ta có: \({y^\prime } = {\left( {{x^3} - x - 3} \right)^\prime } = 3{x^2} - 1\) nên tiếp tuyến của đồ thị tại điểm \(M\) có hệ số góc là \({y^\prime }(2) = 11\).
Phương trình tiếp tuyến của đồ thị đã cho tại điểm \(M\) là:
\(y - 3 = 11(x - 2) \Leftrightarrow y = 11x - 19.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[30;\;22\] triệu đồng.
B. \[20;\;39\] triệu đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.