Câu hỏi:
13/07/2024 3,362Cho hình thang cân ABCD, đường cao AH. Gọi E, F theo thứ tự là trung điểm của các cạnh bên AD, BC. Chứng minh rằng EFCH là hình bình hành.
Câu hỏi trong đề: Giải Sách Bài Tập Toán 8 Tập 1 !!
Quảng cáo
Trả lời:
*Có AH ⊥ CD ⇒ AHD vuông tại H
E là trung điểm của AD ⇒ HE là trung tuyến ứng với cạnh huyền AD
⇒ HE = 1/2 AD (1)
*F là trung điểm của BC ⇒ CF = 1/2 BC (2)
Mà ABCD là hình thang cân ⇒ BC = AD (3)
Từ (1), (2) và (3) ta có: HE = CF (*)
*Mặt khác: EH = ED = 1/2 AD (Chứng minh trên)
⇒ EHD cân tại E
⇒ (EHD) = (EDH)
Mà (EDH) = (FCH) (góc đáy hình thang cân)
⇒ (FCH) = (EHD) (cùng bằng (EDH))
⇒EH // FC (2 góc ở vị trí đồng vị bằng nhau) (**)
Từ (*) và (**) ⇒ EFCH là hình bình hành (1 cặp cạnh song song và bằng nhau)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét tứ giác ADHE, ta có:
A = (gt)
(ADH) = (vì HD ⊥ AB)
(AEH) = (vì HE ⊥ AC)
Suy ra tứ giác ADHE là hình chữ nhật (vì có 3 góc vuông).
+ Xét ADH và EHD có :
DH chung
AD = EH ( vì ADHE là hình chữ nhật)
(ADN) = (EHD) =
Suy ra: ADH = EHD (c.g.c)
⇒ = (HED)
Lại có: (HED) + = (HEA) =
Suy ra: + =
= ∠(chứng minh trên) ⇒ + =
Gọi I là giao điểm của AM và DE.
Trong AIE ta có: (AIE) = 180o – (+ ) = - =
Vậy AM ⊥ DE.
Lời giải
ΔAHB vuông tại H có HI là đường trung tuyến thuộc cạnh huyền AB
⇒ HI = IA = 1/2 AB (tính chất tam giác vuông)
⇒ AHI cân tại I
⇒ (IAH) = (IHA) (1)
AHC vuông tại H có HK là đường trung tuyến thuộc cạnh huyền AC
⇒ HK = KA = 1/2 AC (tính chất tam giác vuông)
⇒ KAH cân tại K ⇒(KAH) = (KHA) (2)
(IHK) = (IHA) + (KHA) (3)
Từ (1), (2) và (3) suy ra: (IHK) = (IAH) + (KAH) = (IAK) = (BAC) =
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
10 Bài tập Nhận biết đơn thức, đơn thức thu gọn, hệ số, phần biến và bậc của đơn thức (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 5)
Dạng 8: Bài luyện tập 3 dạng 4. Tổng hợp có đáp án
Dạng 2: Bài luyện tập 1 Dạng 2: Rút gọn phân thức có đáp án