Câu hỏi:

13/07/2024 19,800

Cho tam giác ABC cân tại A, các đường phân giác BE, CF. Chứng minh rằng BFEC là hình thang cân có đáy nhỏ bằng cạnh bên.

Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

+) Do BE và CF lần lượt là tia phân giác của góc B và góc C nên ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Mà tam giác ABC cân tại A nên B = C

Suy ra: ABE = ACF

Xét hai tam giác AEB và AFC

Có AB = AC (ABC cân tại A)

ABE = ACF (chứng minh trên)

A là góc chung

⇒ AEB = AFC (g.c.g) ⇒ AE = AF ⇒ AEF cân tại A

⇒ AFE = (1800− A) / 2 và trong tam giác ABC: B = (1800− ∠A) / 2

AFE = B ⇒ FE//BC ( có hai góc ở vị trí đồng vị bằng nhau).

⇒ Tứ giác BFEC là hình thang.

Vì FE//BC nên ta có: FEB = EBC (so le trong)

Lại có: FBE = EBC ( vì BE là tia phân giác của góc B)

FBE = FEB

⇒ FBE cân ở F ⇒ FB = FE

⇒ Hình thang BFEC là hình thang cân có đáy nhỏ bằng cạnh bên (đpcm)

Bình luận


Bình luận

NGỌC YẾN
14:12 - 06/01/2022

BE và CF lần lượt vuông góc với AC và AB (E thuộc AC ;F thuộc AB) chứng minh BF=EC
Giúp với ạ^^

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình thang cân ABCD có AB //CD, AB < CD. Kẻ các đường cao AH, BK. Chứng minh rằng: DH = CK

Xem đáp án » 13/07/2024 68,741

Câu 2:

Chứng minh hình thang có hai đường chéo bằng nhau là hình thang cân.

Xem đáp án » 13/07/2024 46,437

Câu 3:

Hình thang cân ABCD có AB // CD, O là giao điểm của hai đường chéo. Chứng minh rằng OA = OB, OC = OD.

Xem đáp án » 13/07/2024 44,654

Câu 4:

Hình thang cân ABCD có đường chéo BD vuông góc với cạnh bên BC, BD là tia phân giác của-góc D. Tính chu vi của hình thang, biết BC = 3cm.

Xem đáp án » 13/07/2024 42,059

Câu 5:

Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD. Chứng minh rằng CA là tia phân giác của góc C.

Xem đáp án » 13/07/2024 18,767

Câu 6:

Hai đoạn thẳng AB và CD cắt nhau tại 0. Biết rằng OA = OC, OB = OD. Tứ giác ABCD là hình gì ? Vì sao

Xem đáp án » 13/07/2024 13,600
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua