Câu hỏi:

13/07/2024 43,380

Hình thang cân ABCD có đường chéo BD vuông góc với cạnh bên BC, BD là tia phân giác của-góc D. Tính chu vi của hình thang, biết BC = 3cm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: AD = BC = 3 (cm) (tính chất hình thang cân)

(ABD) = (BDC) (so le trong)

(ADB) = (BDC) ( do DB là tia phân giác của góc D )

(ABD) = (ADB)

ABD cân tại A

⇒ AB = AD = 3 (cm)

BDC vuông tại B

(BDC) + C = 900

(ADC) = C (gt)

Mà (BDC) = 1/2 (ADC) nên (BDC) = 1/2 C

C + 1/2 C = 900 ⇒ C = 600

Từ B kẻ đường thẳng song song AD cắt CD tại E.

Hình thang ABED có hai cạnh bên song song nên AB = DE và AD = BE

⇒ DE = 3 (cm), BE = 3 (cm)

(BEC) = (ADC) (đồng vị)

Suy ra: (BEC) = C

BEC cân tại B có C = 600

BEC đều

⇒ EC = BC = 3 (cm)

CD = CE + ED = 3 + 3 = 6(cm)

Chu vi hình thang ABCD bằng:

AB + BC + CD + DA = 3 + 3 + 6 + 3 = 15 (cm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét hai tam giác vuông AHD và BKC:

(AHD) = (BKC) = 900

AD = BC (tính chất hình thang cân)

C = D (gt)

Suy ra: AHD = BKC (cạnh huyền, góc nhọn)

⇒ HD = KC

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Từ B kẻ đường thẳng song song với AC cắt đường thẳng DC tại K.

Ta có hình thang ABKC có hai cạnh bên BK // AC nên AC = BK

Mà AC = BD (gt)

Suy ra: BD = BK do đó BDK cân tại B

D1 = K (tính chất hai tam giác cân)

Ta lại có: C1 = K (hai góc đồng vị)

Suy ra:  D1 C1 

Xét ACD và BDC:

AC = BD (gt)

C1 = D1 (chứng minh trên)

CD chung

Do đó ACD = BDC (c.g.c) ⇒ (ADC) = (BCD)

 

Hình thang ABCD có (ADC) = (BCD) nên là hình thang cân.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP