Câu hỏi:

13/07/2024 9,710

Viết phương trình mặt phẳng trung trực của đoạn thẳng AB với A(1; -2; 4), B(3; 6; 2).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đoạn thẳng AB có trung điểm là I(2; 2; 3)

Mặt phẳng trung trực của đoạn AB đi qua I và có vecto pháp tuyến là n = IB = (1; 4; −1). Phương trình mặt phẳng trung trực của đoạn AB là:

1(x – 2) + 4(y – 2) – 1(z – 3) = 0 hay x + 4y – z – 7 = 0.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi giao điểm của (α) với ba tia Ox, Oy, Oz lần lượt là A(a; 0; 0), B(0; b; 0), C(0; 0 ; c) (a, b, c > 0).

Mặt phẳng (α) có phương trình theo đoạn chắn là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do (α) đi qua M(1; 2; 3) nên ta thay tọa độ của điểm M vào (1):

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Thể tích của tứ diện OABC là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Áp dụng bất đẳng thức Cô-si ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇒ abc 27.6 ⇒ V  27

Ta có: V đạt giá trị nhỏ nhất ⇔ V = 27

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy phương trình mặt phẳng (α) thỏa mãn đề bài là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

hay 6x + 3y + 2z – 18 = 0

Lời giải

Mặt phẳng (β) song song với trục Oy và vuông góc với mặt phẳng (α):

2x – y + 3z + 4 = 0, do đó hai vecto có giá song song hoặc nằm trên (β) là: j = (0; 1; 0) và nα = (2; −1; 3)

Suy ra (β) có vecto pháp tuyến là nβ = j  nα = (3; 0; −2)

Mặt phẳng (β) đi qua điểm M(2; -1; 2) có vecto pháp tuyến là: nβ = (3; 0; −2)

Vậy phương trình của (β) là: 3(x – 2) – 2(z – 2) = 0 hay 3x – 2z – 2 = 0

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay