Câu hỏi:

13/07/2024 379

Chứng minh rằng với mọi số thực a, b, c phương trình: (x  a).(x - b) + (x - b).(x - c) + (x  c).(x - a) = 0 có ít nhất một nghiệm.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

- Đặt f(x) = (x – a).(x - b) + (x - b).(x - c)+ (x – c).(x- a) thì f(x) liên tục trên R.

- Không giảm tính tổng quát, giả sử a ≤ b ≤ c

- Nếu a = b hoặc b = c thì f(b) = ( b - a).(b - c) = 0 suy ra phương trình có nghiệm x = b.

- Nếu a < b < c thì f(b) = (b - a)(b - c) < 0 và f(a) = (a - b).(a - c) >) 0

   do đó tồn tại x0 thuộc khoảng (a, b) để fx0= 0

- Vậy phương trình đã cho luôn có ít nhất một nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số f(x)=3x+2 khi x<-1x2-1khi x-1. Chọn khẳng định đúng trong các khẳng định sau.

Xem đáp án » 10/07/2020 13,266

Câu 2:

limn3-2n+1 bằng

Xem đáp án » 10/07/2020 12,558

Câu 3:

lim5n-2n bằng

Xem đáp án » 10/07/2020 8,772

Câu 4:

limx--2x3+5x bằng

Xem đáp án » 10/07/2020 7,476

Câu 5:

Cho số thập phân vô hạn tuần hoàn a = 2,151515... (chu kỳ 15), a được biểu diễn dưới dạng phân số tối giản, trong đó m, n là các số nguyên dương. Tìm tổng m + n. 

Xem đáp án » 10/07/2020 5,638

Câu 6:

Tính lim un với un=5n2+3n-7n2

Xem đáp án » 10/07/2020 5,316

Câu 7:

Giới hạn của dãy số un với un=n3+2n+1n4+3n3+5n2+6 bằng

Xem đáp án » 10/07/2020 4,274

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store