Trên đường tròn (O) đường kính AB, lấy điểm M (khác A và B). Vẽ tiếp tuyến của (O) tại A. Đường thẳng BM cắt tiếp tuyến đó tại C. Chứng minh rằng ta luôn có:
Quảng cáo
Trả lời:
là góc nội tiếp chắn nửa đường tròn
AC là tiếp tuyến của đường tròn tại A
⇒ AC ⊥ AO
⇒ ΔABC vuông tại A có đường cao AM
⇒ (Hệ thức về cạnh và đường cao trong tam giác vuông).
Kiến thức áp dụng
+ ΔABC vuông tại A có: h2 = b’.c’
+ Góc nội tiếp chắn nửa đường tròn là góc vuông.
+ Tiếp tuyến của đường tròn (O) tại A là đường thẳng qua A và vuông góc với bán kính OA.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Kiến thức áp dụng
Trong một đường tròn:
+ Số đo của góc nội tiếp bằng một nửa số đo của cung bị chắn.
+ Hai cung bị chắn giữa hai dây song song thì bằng nhau.
Lời giải
là góc nội tiếp chắn nửa đường tròn ⇒
⇒ AN ⊥ NB
là góc nội tiếp chắn nửa đường tròn ⇒
⇒ AM ⊥ MB
ΔSHB có: SM ⊥ HB, NH ⊥ SB và SM; HN cắt nhau tại A.
⇒ A là trực tâm của ΔSHB.
⇒ AB ⊥ SH (đpcm)
Kiến thức áp dụng
+ Góc nội tiếp chắn nửa đường tròn là góc vuông.
+ Trong một tam giác, ba đường cao đồng quy tại trực tâm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.