Câu hỏi:

13/07/2024 4,437 Lưu

 a) Vẽ hình 62 (tạo bởi các cung tròn) với HI = 10cm và HO = BI = 2cm. Nêu cách vẽ.

b) Tính diện tích hình HOABINH (miền gạch sọc).

c) Chứng tỏ rằng hình tròn đường kính NA có cùng diện tích với hình HOABINH đó .

Giải bài 83 trang 99 SGK Toán 9 Tập 2 | Giải toán lớp 9

Hình 62

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Cách vẽ

- Vẽ nửa đường tròn đường kính HI = 10cm, tâm M.

- Trên đường kính HI lấy điểm O và điểm B sao cho HO = BI = 2cm.

- Vẽ hai nửa đường tròn đường kính HO, BI nằm cùng phía với đường tròn (M).

- Vẽ nửa đường tròn đường kính OB nằm khác phía đối với đường tròn (M). Đường thẳng vuông góc với HI tại M cắt (M) tại N và cắt đường tròn đường kính OB tại A.

b)

Giải bài 83 trang 99 SGK Toán 9 Tập 2 | Giải toán lớp 9

Diện tích miền gạch sọc bằng:

S=S1S2S3+S4

với:

+ S1 là nửa đường tròn đường kính HI

Giải bài 83 trang 99 SGK Toán 9 Tập 2 | Giải toán lớp 9

S2; S3 là nửa đường tròn đường kính HO và BI.

Giải bài 83 trang 99 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Ta tính OB:

Ta có: HO+ OB + BI = HI

⇔ 2+ OB + 2= 10 nên OB = 6

+ S4 là nửa đường tròn đường kính OB

Giải bài 83 trang 99 SGK Toán 9 Tập 2 | Giải toán lớp 9

c)Ta có: Giải bài 83 trang 99 SGK Toán 9 Tập 2 | Giải toán lớp 9

Do đó, NA = MN+ MA= 8

Diện tích hình tròn đường kính NA bằng : π42 = 16π (cm2) (2)

so sánh (1) và (2) ta thấy hình tròn đường kính NA có cùng diện tích với hình HOABINH.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải bài 84 trang 99 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Diện tích hình quạt tròn bán kính R, cung nº được tính theo công thức:

Giải bài 79 trang 98 SGK Toán 9 Tập 2 | Giải toán lớp 9

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP