Câu hỏi:

19/08/2022 9,657

Cho hệ phương trình mx+y=34x+my=6(m là tham số). Tìm m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x>0y>1

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hệ 

mx+y=34x+my=6y=3mx4x+m3mx=6y=3mx4x+3mm2x=6y=3mx4m2x=63my=3mx                               1m24x=3m2     2

Hệ phương trình đã cho có nghiệm duy nhất (2) có nghiệm duy nhất

m240m±2(*)

Khi đó hệ đã cho có nghiệm duy nhất

x=3m+2y=33mm+2x=3m+2y=6m+2

Ta có

x>0y>13m+2>06m+2>1m+2>04mm+2>0m>24m>0m>2m<42<m<4

Kết hợp với (*) ta được giá trị m cần tìm là – 2 < m < 4; m2

Đáp án: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có

x+2y=m+32x3y=m2x+4y=2m+62x3y=mx+2y=m+37y=m+6x=5m+97y=m+67

Hệ phương trình có nghiệm duy nhất (x; y) =5m+97;m+67  

Lại có x + y = −3 hay 5m+97+m+67=35m + 9 + m + 6 = −21

6m = −36m = −6

Vậy với m = −6 thì hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x + y = −3

Đáp án: A

Lời giải

Ta có 2x+y=5m1x2y=2

y=5m12xx25m12x=2y=5m12x5x=10m

x=2my=m1

Thay vào x2  2y2 = 2 ta có

x22y2=2(2m)22(m1)2 =22m2+4m=0m=0m=2    

Vậy m {−2; 0}

Đáp án: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP