Câu hỏi:

03/02/2021 12,391 Lưu

Cho hình chóp S.ABCD có đáy ABCD là  hình bình hành và tam giác SAD vuông cân tại A. Xác định góc giữa hai đường thẳng SD và BC

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì đáy ABCD là hình bình hành nên AD// BC

Khi đó; ( SD;  BC) = ( SD; AD)=   SDA^  (1) 

Vì tam giác SAD là tam giác vuông cân tại A nên  ADS^ =  450  (2)

 Vậy góc giữa hai đường thẳng SD và BC là 450

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

phương án A và B sai vì hai đường thẳng cùng vuông góc với đường thẳng thứ ba có thể cắt nhau hoặc chéo nhau.

Phương án C đúng vì hai đường thẳng cùng song song với đường thẳng thứ ba thì phương của chúng song song với nhau.

Phương án D sai vì hai đường thẳng cùng song song với đường thẳng thứ ba thì có thể song song hoặc trùng nhau.

Đáp án C

Lời giải

Phương án A sai vì tam giác ACB’ có ba cạnh bằng a

Phương án C sai vì tam giác CB’D’ có ba cạnh a, a√3,a√3 nên không thể vuông tại B’

Phương án D sai vì góc giữa đường thẳng B’C và AA’ bằng 0o

Phương án B đúng vì:

CB'.  CD = (CC'+C'B'). CD=CC'.  CD+C'B'. CD  =  CC'. CD. cosC'CD^+C'B'. CD. cosBCD^ = a.a.cos600+a.a. cos(1800- ABC^) = a22-a22 = 0 

Đáp án B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP