Câu hỏi:

03/02/2021 2,694

Cho tứ diện ABCD có AB = AC = AD; góc BAC bằng góc BAD bằng 60o. Gọi M và N là trung điểm của AB và CD

Kết luận nào sau đây sai?

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tam giác ABD có AB = AD và BAD^=60°

Nên tam giác ABD đều DM=AB32 (DM là trung tuyến)

Tam giác ABC có AB = AC và BAC^=60°

Nên tam giác ABC đều CM=AB32 (CM là trung tuyến)

Do đó: DM = CM nên tam giác MCD cân tại M có MN là trung tuyến (do N là trung điểm của CD)

Suy ra MN là đường cao của tam giác MCD

MNCD

Chứng minh tương tự:

  Vì hai tam giác ACD và BCD bằng nhau (c.c.c) nên hai đường trung tuyến tương ứng AN; BN bằng nhau: 

  AN = BN 

Suy ra:tam giác ABN cân tại N có NM là đường trung tuyến nên 

 MNAB

Vậy kết luận D là kết luận sai

Đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khẳng định nào sau đây đúng?

Xem đáp án » 03/02/2021 14,248

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là  hình bình hành và tam giác SAD vuông cân tại A. Xác định góc giữa hai đường thẳng SD và BC

Xem đáp án » 03/02/2021 7,390

Câu 3:

Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a và các góc tại  đỉnh B đều bằng 60o.

Đường thẳng B’C vuông góc với đường thẳng:

Xem đáp án » 03/02/2021 3,555

Câu 4:

Nếu ba vecto a, b, c cùng vuông góc với vecto n khác 0 thì chúng.

Xem đáp án » 03/08/2020 1,862

Câu 5:

Cho tứ diện ABCD có tam giác  ABC và ACD  là tam giác đều .

Gọi M, N , P lần lượt là trung điểm của BC;  BD và AB. Tính góc giữa hai đường thẳng DM và MN ?

Xem đáp án » 03/02/2021 1,507

Câu 6:

Các đường thẳng cùng vuông góc với một đường thẳng thì:

Xem đáp án » 03/08/2020 1,448

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store