Câu hỏi:
03/02/2021 1,061Cho hai hình vuông ABCD và ABEF cạnh a nằm trên hai mặt phẳng vuông góc.
DE bằng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
EB ⊥(ABCD) vì nó vuông góc với giao tuyến AB của hai mặt phẳng vuông góc đã cho
⇒ CD ⊥ (EBC)
⇒ tam giác ECD vuông tại C.
(Áp dụng định lý Py - ta - go)
Ta có: EB BC nên tam giác EBC vuông tại B
Suy ra
Nên ta có:
⇒ DE = a√3.
Vậy phương án A đúng
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD.
Hai mặt phẳng (SAC) và (AHK) vuông góc vì:
Câu 2:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc giữa cạnh bên với mặt phẳng đáy bằng ∝
Tan của góc giữa mặt bên và mặt đáy bằng:
Câu 3:
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc.
Khằng định nào sau đây đúng?
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a.
Mặt phẳng (ABCD) vuông góc với mặt phẳng:
Câu 5:
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc. Điểm cách đều bốn điểm A, B, C, D là:
Câu 6:
Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD.
Hai mặt phẳng (SAB) và (SBC) vuông góc vì.
về câu hỏi!