Câu hỏi:

09/01/2021 30,183

Cho đa giác đều n đỉnh, nN và n3 Tìm n  biết rằng đa giác đã cho có 135 đường chéo.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án là D

Đa giác lồi n đỉnh thì có n cạnh.

Nối 2 điểm bất kì từ n điểm này ta được 1 đường chéo hoặc 1 cạnh của đa giác.

Do đó, số đường chéo bằng tổng số đoạn thẳng được dựng từ n điểm trừ đi số cạnh.

TỔng số đoạn thẳng được dựng từ n điểm là số tổ hợp chập 2 của n  phần tử.

Như vậy, tổng số đoạn thẳng là Cn2

 Số cạnh của đa giác lồi là n

Suy ra số đường chéo của đa giác đều n đỉnh là: 

Cn2-n=n!(n-2)!.2!-n=n.(n-1)2-n=n(n-3)2

Theo bài ra, ta có n3n(n-3)2=135n3n2-3n-270=0n=18

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án là C

Đa giác lồi 10 cạnh thì có 10 đỉnh.

Lấy hai điểm bất kỳ trong 10 đỉnh của đa giác lồi ta được số đoạn thẳng gồm cạnh và đường chéo của đa giác lồi.

 Do đó, tổng số cạnh và đường chéo của đa giác là: C102

Suy ra,số đường chéo cần tìm là C102-10=10!8!.2!-10=35

Lời giải

Đáp án là B

Hai đường tròn phân biệt cho tối đa hai giao điểm.

Và 5 đường tròn phân biệt cho số giao điểm tối đa khi 2 đường tròn bất kỳ trong 5 đường tròn đôi một cắt nhau.

Vậy số giao điểm tối đa của 5 đường tròn phân biệt là 2.C52=20 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP