Câu hỏi:

09/01/2021 29,444

Cho đa giác đều n đỉnh, nN và n3 Tìm n  biết rằng đa giác đã cho có 135 đường chéo.

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án là D

Đa giác lồi n đỉnh thì có n cạnh.

Nối 2 điểm bất kì từ n điểm này ta được 1 đường chéo hoặc 1 cạnh của đa giác.

Do đó, số đường chéo bằng tổng số đoạn thẳng được dựng từ n điểm trừ đi số cạnh.

TỔng số đoạn thẳng được dựng từ n điểm là số tổ hợp chập 2 của n  phần tử.

Như vậy, tổng số đoạn thẳng là Cn2

 Số cạnh của đa giác lồi là n

Suy ra số đường chéo của đa giác đều n đỉnh là: 

Cn2-n=n!(n-2)!.2!-n=n.(n-1)2-n=n(n-3)2

Theo bài ra, ta có n3n(n-3)2=135n3n2-3n-270=0n=18

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Với đa giác lồi 10 cạnh thì số đường chéo là

Xem đáp án » 09/01/2021 97,270

Câu 2:

Số giao điểm tối đa của 5 đường tròn phân biệt là: 

Xem đáp án » 06/08/2020 88,359

Câu 3:

Từ  20 người cần chọn ra một đoàn đại biểu gồm 1 trưởng đoàn, 1 phó đoàn, 1 thư kí và 3 ủy viên. Hỏi có bao nhiêu cách chọn đoàn đại biểu ?

Xem đáp án » 08/09/2020 66,508

Câu 4:

Có bao nhiêu cách xếp khác nhau cho 4 người ngồi vào 6 chỗ trên một bàn dài?

Xem đáp án » 06/08/2020 65,269

Câu 5:

Có 12 học sinh giỏi gồm 3 học sinh khối 12, 4 học sinh khối 11 và 5  học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh trong số học sinh giỏi đó sao cho mỗi khối có ít nhất 1 học sinh?

Xem đáp án » 06/08/2020 64,978

Câu 6:

Một túi đựng 6 bi trắng, 5 bi xanh. Lấy ra 4 viên bi từ túi đó. Hỏi có bao nhiêu cách lấy mà 4 viên bi lấy ra có đủ hai màu. 

Xem đáp án » 09/01/2021 57,143

Câu 7:

Có 3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau, 5 viên bi xanh khác nhau. Hỏi có bao nhiêu cách sắp xếp các viên bi trên thành một dãy sao cho các viên bi cùng màu ở cạnh nhau?

Xem đáp án » 06/08/2020 54,673
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua