Quảng cáo
Trả lời:
Xét phương trình: \({\mathop{\rm s}\nolimits} {\rm{inx}} + c{\rm{os}}x = 1 - \frac{1}{2}\sin 2x\)
Đặt t = sinx + cosx \(\left( { - \sqrt 2 \le t \le \sqrt 2 } \right)\)
⇒ t2 = 1 + 2sinxcosx
⇔ t2 – 1 = sin2x
Khi đó, phương trình trở thành: \(t = 1 - \frac{1}{2}\left( {{t^2} - 1} \right)\)
⇔ - t2 + 2t – 3 = 0
\( \Leftrightarrow \left[ \begin{array}{l}t = 1(TM)\\t = - 3\left( L \right)\end{array} \right.\)
Với t = 1 thì sinx + cosx = 1
\( \Leftrightarrow \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) = 1\)
\( \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \frac{1}{{\sqrt 2 }}\)
\( \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi \\x + \frac{\pi }{4} = \frac{{3\pi }}{4} + k2\pi \end{array} \right.,k \in \mathbb{Z}\)
\( \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = \frac{\pi }{2} + k2\pi \end{array} \right.,k \in \mathbb{Z}\)
Vậy nghiệm của phương trình đã cho là: \(x = k2\pi \) và \(x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\).
Chọn D
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vậy phương trình đã cho có nghiệm ,
Chọn đáp án D
Lời giải
Chọn đáp án B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.