Câu hỏi:

25/08/2020 2,556

Cho ΔABC có AB = 4cm, BC = 6cm, AC = 5cm. ΔMNP có MN = 3cm, NP = 2,5cm, PM = 2cm thì tỉ lệ SMNPSABC  bằng bao nhiều?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

MNBC=36=12,PNCA=2,55=12,PMAB=24=12MNBC=PNCA=PMAB=12

Vậy ΔPMN ~ ΔABC (c - c - c)

Suy ra tỉ số đồng dạng k của hai tam giác là k=MNBC=12

SMNPSABC=k2=(12)2=14

Đáp án: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Áp dụng hệ quả định lý Ta-lét, ta có: ADAB=AEAC=DEBC

=> Đáp án A đúng.

+ Vì ADAB=AEAC  nên AD.AC = AB.AE

=> Đáp án B sai.

+ Ta có: DEBC=ADABADDB(hệ quả định lý Ta-lét)

=> Đáp án C sai.

+ Ta có: ADDB=DEBC  => AD.BC = AB.DE

=> Đáp án D sai.

Đáp án: A

Câu 2

Lời giải

Giả sử 2 tam giác đồng dạng là ABC và DEF, 2 cạnh bé nhất của 2 tam giác lần  lượt là AB và DE.

Khi đó: ABDE=25

Vì ΔABC ~ ΔDEF nên:

ABDE=BCEF=CAFD=AB+BC+CADE+EF+FD=25pp'=25p=25p'

Ta lại có: p’ - p = 18

=> p’ - 25 p’ = 18p’ = 30

=> p = 25 p’ = 12

Đáp án: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP