Câu hỏi:

02/09/2020 499

Cho phương trình x12+1=4x4xn-11. Tìm số n nguyên dương bé nhất để phương trình có nghiệm

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cái hay của bài toán này là đi tìm giá trị bé nhất của n bởi vì nó yêu cầu người làm toán phải biết “khôn khéo” trong quá trình biện luận để loại bỏ những giá trị không cần thiết và sử dụng linh hoạt phương pháp đánh giá bằng bất đẳng thức.

Điều kiện: xn-10

* x = 1 không phải là nghiệm của phương trình (1)

* Với n chẵn thì nếu x0 là một nghiệm của (1) thì -x0 cũng là một nghiệm của (1)

* Với n lẻ thì x1. Khi đó phương trình (1) xác định và ta chỉ cần xét x > 1

Từ x > 1 ta có x4+1>2x2 và x8-x4+1=x4x4-1+1>2x2x4-1

Nhân vế theo vế của hai bất đẳng thức này ta được:

 x4+1x8-x4+1>4x4x4-1x12+1>4x4x4-1

Từ (2) ta thấy với n = 4, phương trình (1) vô nghiệm và do x > 1 nên với n < 4 thì phương trình (1) cũng vô nghiệm

* Với n = 5

Xét hàm số x12+1=4x4xn-11 liên tục và xác định trên [1;+)

Ta có 

f1=2>0f65=6512+1-4654655-1<0

Như vậy, phương trình f(x) = 0 có nghiệm x00;65

* Với n > 5 lại xét hàm số x12+1=4x4xn-11 liên tục trên [1;+)

Lập luận hoàn toàn tương tự, ta cũng chứng minh được phương trình g(x) = 0 có nghiệm x01;65

Do đó phương trình có nghiệm với mọi n5 và số tự nhiên bé nhất cần tìm là n = 5

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có 

y=sinx=cos2x=sinx-1-2sin2x=2sin2x+sinx-1

Đặt t = sin(x),-1t1

Ta sẽ đi tìm GTLN và GTNN của hàm số y=gt=2t2+t-1 trên đoạn [ -1;1 ]

Ta có gt=-2t3-t+1, -1t122t3+t-1,  12t1

* Xét hàm số ht=-2t3-t+1 trên đoạn-1;12

Dễ dàng tìm được 

Maxr12;1ht=98t=-14Minr12;1ht=0t=12

* Xét hàm số kt=2t3+t-1 trên đoạn 12;1

Cũng dễ dàng tìm được 

Maxr12;1kt=2t=1Minr12;1kt=0t=12

Qua hai trường hợp trên ta đi đến kết luận

Maxr-1;3gt=2t=1Minr-1;3gt=0t=12

Hay 

M=Maxy=2sinx=-1x=-π2+k2πm=Miny=0sinx=12x=π6+k2πx=5π6+k2π

Đáp án C

Lời giải

Ta có 

P=1-log3ablogab+logba+1logaab=1-logab1+log2ab+logablog2ab+1+logab=logab

Đáp án B

Câu 3

Tìm a để hàm số y=x-x2-x+a luôn nghịch biến trên R

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Tìm m để số phức z=1+1+mi+1+mi2 là số thuần ảo

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay