Câu hỏi:

02/09/2020 478

Cho phương trình x12+1=4x4xn-11. Tìm số n nguyên dương bé nhất để phương trình có nghiệm

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cái hay của bài toán này là đi tìm giá trị bé nhất của n bởi vì nó yêu cầu người làm toán phải biết “khôn khéo” trong quá trình biện luận để loại bỏ những giá trị không cần thiết và sử dụng linh hoạt phương pháp đánh giá bằng bất đẳng thức.

Điều kiện: xn-10

* x = 1 không phải là nghiệm của phương trình (1)

* Với n chẵn thì nếu x0 là một nghiệm của (1) thì -x0 cũng là một nghiệm của (1)

* Với n lẻ thì x1. Khi đó phương trình (1) xác định và ta chỉ cần xét x > 1

Từ x > 1 ta có x4+1>2x2 và x8-x4+1=x4x4-1+1>2x2x4-1

Nhân vế theo vế của hai bất đẳng thức này ta được:

 x4+1x8-x4+1>4x4x4-1x12+1>4x4x4-1

Từ (2) ta thấy với n = 4, phương trình (1) vô nghiệm và do x > 1 nên với n < 4 thì phương trình (1) cũng vô nghiệm

* Với n = 5

Xét hàm số x12+1=4x4xn-11 liên tục và xác định trên [1;+)

Ta có 

f1=2>0f65=6512+1-4654655-1<0

Như vậy, phương trình f(x) = 0 có nghiệm x00;65

* Với n > 5 lại xét hàm số x12+1=4x4xn-11 liên tục trên [1;+)

Lập luận hoàn toàn tương tự, ta cũng chứng minh được phương trình g(x) = 0 có nghiệm x01;65

Do đó phương trình có nghiệm với mọi n5 và số tự nhiên bé nhất cần tìm là n = 5

Đáp án C

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi M m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=sinx-cos2x. Hỏi mệnh đề nào trong các mệnh đề sau là sai?

Xem đáp án » 02/09/2020 7,279

Câu 2:

Rút gọn biểu thức P=1-log3ablogab+logba+1logaab với 0 < a, b1

Xem đáp án » 05/09/2020 3,590

Câu 3:

Tìm a để hàm số y=x-x2-x+a luôn nghịch biến trên R

Xem đáp án » 02/09/2020 3,111

Câu 4:

Tìm m để số phức z=1+1+mi+1+mi2 là số thuần ảo

Xem đáp án » 06/09/2020 2,483

Câu 5:

Trong không gian Oxyz, cho mặt cầu S:x2+y2+z2-2z+4y-6z-11 và mặt phẳng α:2x+2y-z+17=0. Viết phương trình mặt phẳng β song song với α và cắt (S) theo giao tuyến là đường tròn có chu vi bằng 6π

Xem đáp án » 07/09/2020 1,530

Câu 6:

Trong loại cây xanh trong quá trình quang hợp sẽ nhận được một lượng nhỏ cacbon 14 (một đồng vị của cacbon). Khi một bộ phận của một cái cây nào đó bị chết thì hiện tượng quang hợp cũng ngưng và nó sẽ không nhận thêm cácbon 14 nữa. Lương cacbon 14 của bộ phận đó sẽ phân hủy một cách chậm chạp, chuyển hóa thành nitơ 14. Biết rằng nếu gọi P(t) là số phần trăm cacbon 14 còn lại trong một bộ phận của một cái cây sinh trưởng thì từ t năm trước đây thì P(t) được tính theo công thức Pt=100.0,5t5750% Phân tích một mẫu gỗ từ một công trình công trình kiến trúc cổ, người ta thấy lượng cacbon 14 còn lại trong mẫu gỗ đó là 65%. Hãy xác định niên đại công trình kiến trúc đó (lấy gần đúng).

Xem đáp án » 05/09/2020 1,006

Câu 7:

Tính giới hạn limxk=1n6k3k+1-2k+13k-2k

Xem đáp án » 02/09/2020 986
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua