Câu hỏi:

06/09/2020 179 Lưu

Cho số thực a bất kì và giả sử f là môt hàm liên tục. Hỏi mệnh đề nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt Fx=0xftdt. Ta cần chứng minh 0afxx-adx=0aFxdx

Ta có F'(x) = f(x). Khi đó

0afxa-xdx=a0afxdx-0axfxdx=aFa-0axF'xdx

Sử dụng công thức tích phân từng phần, ta có 0axF'xdx=aFa-0aFxdx

Thay vào ta thu được kết quả ở B

Đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có 

y=sinx=cos2x=sinx-1-2sin2x=2sin2x+sinx-1

Đặt t = sin(x),-1t1

Ta sẽ đi tìm GTLN và GTNN của hàm số y=gt=2t2+t-1 trên đoạn [ -1;1 ]

Ta có gt=-2t3-t+1, -1t122t3+t-1,  12t1

* Xét hàm số ht=-2t3-t+1 trên đoạn-1;12

Dễ dàng tìm được 

Maxr12;1ht=98t=-14Minr12;1ht=0t=12

* Xét hàm số kt=2t3+t-1 trên đoạn 12;1

Cũng dễ dàng tìm được 

Maxr12;1kt=2t=1Minr12;1kt=0t=12

Qua hai trường hợp trên ta đi đến kết luận

Maxr-1;3gt=2t=1Minr-1;3gt=0t=12

Hay 

M=Maxy=2sinx=-1x=-π2+k2πm=Miny=0sinx=12x=π6+k2πx=5π6+k2π

Đáp án C

Lời giải

Ta có 

P=1-log3ablogab+logba+1logaab=1-logab1+log2ab+logablog2ab+1+logab=logab

Đáp án B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP