Có 15 học sinh giỏi gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh
A. 5005
B. 805
C. 4205
D. 4249
Quảng cáo
Trả lời:
Đáp án C
Phương pháp giải: Sử dụng biến cố đối và các quy tắc đếm cơ bản
Lời giải:
Ta đi làm phần đối của giả thiết, tức là chọn 6 học sinh giỏi chỉ lấy từ một khối hoặc hai khối.
Chọn 6 học sinh giỏi trong 15 học sinh giỏi của 3 khối có cách
Số cách chọn 6 học sinh giỏi bằng cách chỉ lấy từ 1 khối 12 là
Chọn 6 học sinh giỏi trong 10 học sinh giỏi của 2 khối 12 và 11 có cách, tuy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12 => số cách chọn là 210 – 1 = 2019 cách
Chọn 6 học sinh giỏi trong 11 học sinh giỏi của 2 khối 12 và 10 có cách, uy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12 => số cách chọn là 462 – 1 = 461 cách.
Chọn 6 học sinh giỏi trong 9 học sinh giỏi của 2 khối 11 và 10 có cách
Suy ra số cách chọn thỏa mãn yêu cầu bài toán là 5005 – 209 – 461 – 84 – 1 = 4250 cách
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. m = 1
B. Luôn thỏa mãn với mọi m
C. Không có giá trị m thỏa mãn
D. m ≠ 1
Lời giải
Đáp án A
Phương pháp giải:
Dựa vào điều kiện để hàm số đồng biến hoặc nghịch biến trên khoảng xác định
Lời giải:
Ta có R
Hàm số đồng biến trên R R
R
Lời giải
Đáp án A
Phương pháp giải: Tìm tập xác định, tính giới hạn của hàm số dựa vào định nghĩa tiệm cận đứng, tiệm cận ngang
Lời giải:
Vì hàm số xác định trên khoảng không chứa ∞ nên không tồn tại ∞
Suy ra đồ thị hàm số không có tiệm cận ngang
Xét hệ phương trình Đồ thị hàm số có duy nhất 1 tiệm cận đứng
Câu 3
A. 18
B. 1
C. 9
D. 16
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.