Có 15 học sinh giỏi gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh
A. 5005
B. 805
C. 4205
D. 4249
Quảng cáo
Trả lời:
Đáp án C
Phương pháp giải: Sử dụng biến cố đối và các quy tắc đếm cơ bản
Lời giải:
Ta đi làm phần đối của giả thiết, tức là chọn 6 học sinh giỏi chỉ lấy từ một khối hoặc hai khối.
Chọn 6 học sinh giỏi trong 15 học sinh giỏi của 3 khối có cách
Số cách chọn 6 học sinh giỏi bằng cách chỉ lấy từ 1 khối 12 là
Chọn 6 học sinh giỏi trong 10 học sinh giỏi của 2 khối 12 và 11 có cách, tuy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12 => số cách chọn là 210 – 1 = 2019 cách
Chọn 6 học sinh giỏi trong 11 học sinh giỏi của 2 khối 12 và 10 có cách, uy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12 => số cách chọn là 462 – 1 = 461 cách.
Chọn 6 học sinh giỏi trong 9 học sinh giỏi của 2 khối 11 và 10 có cách
Suy ra số cách chọn thỏa mãn yêu cầu bài toán là 5005 – 209 – 461 – 84 – 1 = 4250 cách
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. m = 1
B. Luôn thỏa mãn với mọi m
C. Không có giá trị m thỏa mãn
D. m ≠ 1
Lời giải
Đáp án A
Phương pháp giải:
Dựa vào điều kiện để hàm số đồng biến hoặc nghịch biến trên khoảng xác định
Lời giải:
Ta có R
Hàm số đồng biến trên R R
R
Lời giải
Đáp án C
Phương pháp giải: Áp dụng công thức bài toán vay vốn trả góp, hoặc tìm từng tháng, dùng phương pháp quy nạp và đưa về tổng của cấp số nhân
Lời giải:
Sau tháng thứ nhất số tiền gốc còn lại trong ngân hàng là 500(1+0,5%) - 10 triệu đồng.
Sau tháng thứ hai số tiền gốc còn lại trong ngân hàng là
[500(1+0,5%) – 10].(1+0,5%) – 10 = 500.(1+0,5%)2 – 10[(1+0,5%)+1] triệu đồng
Sau tháng thứ ba số tiền gốc còn lại trong ngân hàng là
500.(1+0,5%)3 – 10[(1+0,5%)2 + (1+0,5%) +1] triệu đồng
Số tiền gốc còn lại sau tháng thứ n là
500(2+0,5%)n – 10[(1+0,5%)n-1 + (1+0,5%)n-2 + … + 1] triệu đồng
Đặt y = 1+0,5% = 1,005 thì ta có số tiền gốc còn lại trong ngân hàng sau tháng thứ n là
Vì lúc này số tiền cả gốc lẫn lãi đã trả hết
Vậy sau 58 tháng thì người đó trả hết nợ ngân hàng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. 18
B. 1
C. 9
D. 16
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.